Answer:
The electrode that removes ions from solution
Explanation:
Each electrochemical cell consists of an anode and a cathode. Oxidation occurs at the anode and reduction occurs at the cathode.
At the anode, ions move from the electrode into the solution while at the cathode ions move from the solution to the electrode.
At the cathode, metal ions accept electron(s) and become deposited on the electrode hence this electrode removes ions from solution. This is reduction.
Answer:
1) Since you have not provided the equations to select the right one, I am going to explain you the relevant facts that are used to solve this question.
2) The transuranium elements are the chemiical elements with atomic number greater than that of the uranium.
The atomic number of uranium is 92. So, the transuranium elements are the elements with atomic number 93 or greater.
This are some of the transuranium elements:
Neptunio - 93
Plutonium - 94
Americium - 95
Curium - 96
Berkelium - 97
Californium - 98
Einstenium - 99
And so all the known elements (the last one is the 118).
3) In a nuclear reaction the total mass number ( shown as superscript to the left of the symbol) and total atomic number (shown as subscript to the left of the symbol) are conserved.
4) Beta decay is the release of a beta particle, which is an electron (considered massles and with charge - 1). So, the beta decay is represented with the symbol:
0
β, which means 0 mass and charge - 1.
-1
5) This is, then, an example of a β decay equation for one transuranium element:
239 239 0
Np → Pu + β
93 94 -1
As you see 239 = 239 + 0 and 93 = 94 - 1, showing that the total mass number ( shown as superscript to the left of the symbol) and the total atomic number (shown as subscript to the left of the symbol) are conserved.
Explanation:
Answer: After three half-lives 1/8 (12.5%) of the original sample remains
Really I appreciate you letting you guys sleep you good though I love it all I gotta see you soon buddy I’m
Answer:
D. [NO₂]²/[N₂O₄]
Explanation:
The equilibrium constant expression for a reaction is products over reactants. Since NO₂ has a coefficient of 2, it will become an exponent.
So, it would be:
[NO₂]²/[N₂O₄]
Hope that helps.