Answer:
Tungsten is used for this experiment
Explanation:
This is a Thermal - equilibrium situation. we can use the equation.
Loss of Heat of the Metal = Gain of Heat by the Water

Q = mΔT
Q = heat
m = mass
ΔT = T₂ - T₁
T₂ = final temperature
T₁ = Initial temperature
Cp = Specific heat capacity
<u>Metal</u>
m = 83.8 g
T₂ = 50⁰C
T₁ = 600⁰C
Cp = 
<u>Water</u>
m = 75 g
T₂ = 50⁰C
T₁ = 30⁰C
Cp = 4.184 j.g⁻¹.⁰c⁻¹

⇒ - 83.8 x
x (50 - 600) = 75 x 4.184 x (50 - 30)
⇒
=
j.g⁻¹.⁰c⁻¹
We know specific heat capacity of Tungsten = 0.134 j.g⁻¹.⁰c⁻¹
So metal Tungsten used in this experiment
Answer:
yh
Explanation:
welcome.This place is for learning
Answer:
D. an orbital notation of the atom
Explanation:
Orbital notiation uses lines and arrows to show shells, subshells, and orbitals for electrons in an atom. Since it shows arrows being paired up in this diagram it would be the best model for Chuck to use.
Answer:
The Correct increasing order of solubility is O2 < Br2 < LiCl < Methanol (CH3OH)
Explanation:
Solubility of compounds or molecules are solely dependent on its inter molecular forces or bonding present in them.
Molecules with Hydrogen bonding usually very soluble in water. Ionic compounds are also very soluble in water because they form ions in solutions. Molecules that possess van der waal forces are usually insoluble in water because they are non-polar.
- O2 (oxygen gas) and Br2 (bromine gas) have van der waal forces in them. Van der waal forces are stronger in Br2 (bromine gas) than O2 (oxygen gas) because Br2 has more number of electrons.
- LiCl is ionic in nature which makes it dissolve in water readily. it easily forms its ions (Li+ and Cl- ) in solutions.
- Methanol (CH3OH) has the highest solubility in water compared to LiCl, Br2 and O2 because it contains Hydrogen bonding which is strongest of all inter molecular forces.