Yes your choices of B C D are right
All of the energy from the Sun that reaches the Earth arrives as solar radiation, part of a large collection of energy called the electromagnetic radiation spectrum. Solar radiation includes visible light, ultraviolet light, infrared, radio waves, X-rays, and gamma rays. Radiation is one way to transfer heat.
Answer:
The partial pressure of argon in the flask = 71.326 K pa
Explanation:
Volume off the flask = 0.001 
Mass of the gas = 1.15 gm = 0.00115 kg
Temperature = 25 ° c = 298 K
Gas constant for Argon R = 208.13 
From ideal gas equation P V = m RT
⇒ P = 
Put all the values in above formula we get
⇒ P =
× 208.13 × 298
⇒ P = 71.326 K pa
Therefore, the partial pressure of argon in the flask = 71.326 K pa
Answer:
75 mg
Explanation:
We can write the extraction formula as
x = m/[1 + (1/K)(Vaq/Vo)], where
x = mass extracted
m = total mass of solute
K = distribution coefficient
Vo = volume of organic layer
Vaq = volume of aqueous layer
Data:
m = 75 mg
K = 1.8
Vo = 0.90 mL
Vaq = 1.00 mL
Calculations:
For each extraction,
1 + (1/K)(Vaq/Vo) = 1 + (1/1.8)(1.00/0.90) = 1 + 0.62 = 1.62
x = m/1.62 = 0.618m
So, 61.8 % of the solute is extracted in each step.
In other words, 38.2 % of the solute remains.
Let r = the amount remaining after n extractions. Then
r = m(0.382)^n.
If n = 7,
r = 75(0.382)^7 = 75 × 0.001 18 = 0.088 mg
m = 75 - 0.088 = 75 mg
After seven extractions, 75 mg (99.999 %) of the solute will be extracted.
Answer:
they are eamples of chemical properties
Explanation:
flammibility is the chemical makeup of the element that makes it flamable and reactivitie is the chemical makeup of an element that is able to reacte to another element