It can be done. Normally the boiling point of water is 100°C. It will boil at temperature greater than 100°C more quickly. Water can be boiled at 95°C but for that the atmospheric pressure of the water should be decreased which will decrease the boiling point of water.
<h3>
Concept :</h3>
To boil water at 95°C, decrease the atmospheric pressure.
At 105°C, the water will be boiling quickly than normal at 100°C.
Water is called the "universal solvent" because it is capable of dissolving more substances than any other liquid. This is important to every living thing on earth. It means that wherever water goes, either through the air, the ground, or through our bodies, it takes along valuable chemicals, minerals, and nutrients.
Answer:
x = 1, -7.5
Explanation:
2x² + 13x = 15
Divide the left side of the equation by 2
2(x² + 6.5x) = 15
Divide 6.5 by 2 and square the quotient
6.5/2 = 3.25
3.25² = 10.5625
Add 10.5625 to the left side
2(x² + 6.5x + 10.5625) = 15
Since you have a 2 outside the parentheses, you will be adding 10.5625•2 to the right side.
10.5625 • 2 = 21.125
2(x² + 6.5x + 10.5625) = 36.125
To factor (x² + 6.5x + 10.5625), add b/2 to x
b/2 = 6.5/2 = 3.25
2(x + 3.25)² = 36.125
Divide by 2
(x + 3.25)² = 18.0625
Square root.
(x + 3.25) = √18.0625
x + 3.25 = ±4.25
Subtract 3.25.
x = 4.25 - 3.25 = 1
x = -4.25 - 3.25 = -7.5
x = 1, -7.5
(g solute/g solution)*100 = % mass/mass
30 g / 400 * 100
0,075 * 100
= 7,5% w/w
hope this helps!
Answer:
In 1827, Brown observed, using a microscope, that small particles ejected from pollen grains suspended in water executed a kind of continuous and jittery movement, this was named “Brownian motion”. ... This random movement of particles suspended in a fluid is now called after him.
Explanation:
HOPE this helps :)