I think that this is false but I am not sure
T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r
where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance.
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect,
Point 1:
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r
Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m
The distance between the two points then is equal to 7.07 m.
</span>
For this we use general equation for gases. Our variables represent:
p- pressure
v-volume
t- temperature
P1V1/T1 = P2V2/T2
in this equation we know:
P1,V1 and T1, T2 and V2.
We have one equation and 1 unknown variable.
P2 = T2P1V1/T1V2 = 1.1atm
Answer:
Sea-floor spreading occurs in the oceanic ridges. In there, volcanic activity, together with the gradual movement of the bottom, form new oceanic crust. This allows a better understanding of the continental drift explained by the theory of plate tectonics.
The greatest evidence for Sea-floor spreading is the oceanic trenches, the oceanic ridges, the magma protruding to the surface and the new seafloor.
In previous theories, continents were assumed to be transported across the sea. Harry Hess, in the 1960s, proposed the idea that the seabed itself moves as it expands from a central point. The theory is now accepted, and the phenomenon is thought to be caused by convection currents in the upper layer of the mantle.
To solve this problem it is necessary to apply the concepts related to the change of Energy in photons and the conservation of energy.
From the theory we could consider that the energy change is subject to

Where
Initial Energy
Energy loses
Replacing we have that


Therefore the Kinetic energy of the electron once it has broken free of the metal surface is 0.8eV