Newton's law of universal gravitation, says that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.
Or in simple words, every particle in the world attracts each other to themselves, but the particle with most mass would attract with more force compared to a particle with less mass.
(<u><em>Please consider leaving a rate, a thanks and, a crown would be really appreciated! Thank you!</em></u>)
The object lost electrons because one electron adds a negative to the object. <span />
They both have produce oxides, use up oxygen, and release energy as well.<span />
Answer:
1.8 kj
Explanation:
Explanation:
A substance's specific heat tells you how much heat is required to increase the mass of
1 g
of that substance by
1
∘
C
.
The equation that establishes a rel;ationship between heat absorbed and change in temperature looks like this
q
=
m
⋅
c
⋅
Δ
T
, where
q
- heat absorbed
m
- the mass of the sample
c
- the specific heat of the substance
Δ
T
- the change in temperature, defined as the difference between the final temperature and the initial temperature of the sample
You have all the information needed to find the amount of heat required to increase the temperature of your sample of mercury by that many degrees Celsius, so just rearange the above equation and solve for
q
q
=
250.0
g
⋅
0.14
J
g
∘
C
⋅
(
62
−
10
)
∘
C
=
1820 J
I'll leave the answer rounded to two sig figs and expressed in kilojoules
q
=
1.8 kJ
Answer Explanation:
A substance's specific heat tells you how much heat is required to increase the mass of
1 g
of that substance by
1
∘
C
.
The equation that establishes a rel;ationship between heat absorbed and change in temperature looks like this
q
=
m
⋅
c
⋅
Δ
T
, where
q
- heat absorbed
m
- the mass of the sample
c
- the specific heat of the substance
Δ
T
- the change in temperature, defined as the difference between the final temperature and the initial temperature of the sample
You have all the information needed to find the amount of heat required to increase the temperature of your sample of mercury by that many degrees Celsius, so just rearange the above equation and solve for
q
q
=
250.0
g
⋅
0.14
J
g
∘
C
⋅
(
62
−
10
)
∘
C
=
1820 J
I'll leave the answer rounded to two sig figs and expressed in kilojoules
q
=
1.8 kJ
Answer link
Answer:
45.31 J
Explanation:
We are given that
Mass of baseball , m=0.145 kg
Initial velocity, u=0
Final velocity, v=25 m/s
We have to find the work done on the baseball to bring it from rest to 25 m/s
We know that
Work done = Change in kinetic energy
Work done, W=
Using the formula
Work done, W
Work done=
Work done, W=45.31 J
Hence, the work done on the baseball to bring it from rest to 25 m/s
=45.31 J