Answer:
a) F = 4.9 10⁴ N, b) F₁ = 122.5 N
Explanation:
To solve this problem we use that the pressure is transmitted throughout the entire fluid, being the same for the same height
1) pressure is defined by the relation
P = F / A
to lift the weight of the truck the force of the piston must be equal to the weight of the truck
∑F = 0
F-W = 0
F = W = mg
F = 5000 9.8
F = 4.9 10⁴ N
the area of the pisto is
A = pi r²
A = pi d² / 4
A = pi 1 ^ 2/4
A = 0.7854 m²
pressure is
P = 4.9 104 / 0.7854
P = 3.85 104 Pa
2) Let's find a point with the same height on the two pistons, the pressure is the same
where subscript 1 is for the small piston and subscript 2 is for the large piston
F₁ = 
the force applied must be equal to the weight of the truck
F₁ =
F₁ = (0.05 / 1) ² 5000 9.8
F₁ = 122.5 N
Answer:
Pebble A has 1/3 the acceleration as pebble B.
Explanation:
F = m×a
mass of a = 3 × mass of b (m_a = 3 × m_b)
Same starting force, F
m_a = mass of a
m_b = mass of b
a_a = acceleration of a
a_b = acceleration of b
F = m_a × a_a = m_b × a_b
3 × m_b × a_a = m_b × a_b
3 × a_a = a_b
OR
a_a = a_b / 3
Answer:
Quartered
Explanation:
Because you're a liberal.
Watts=V*I so in turn I= W/V 375/125 = 3
It would take 3 Amps
Answer:
There are no gaps in space between the photons as they travel. If you were to look at a wave then you'd come to a conclusion that indeed that there aren't any gaps unless they are specifically placed.The light from a distance star indeed spreads out and weakens as it travels, but this just reduces the wave strength and does not introduce gaps.