Answer:
just graph it mate
Step-by-step explanation:
H(x)
x-5+dx=+5;5x-5(x)+5/h(x)-5x(5)+5
+ h =
+ 90 = 90°
ay + k = 2(1) + 8 = 10+5(x)
Answer:
D) 0 = 2(x + 5)(x + 3)
Step-by-step explanation:
Which of the following quadratic equations has no solution?
We have to solve the Quadratic equation for all the options in other to get a positive value as a solution for x.
A) 0 = −2(x − 5)2 + 3
0 = -2(x - 5) × 5
0 = (-2x + 10) × 5
0 = -10x + 50
10x = 50
x = 50/10
x = 5
Option A has a solution of 5
B) 0 = −2(x − 5)(x + 3)
Take each of the factors and equate them to zero
-2 = 0
= 0
x - 5 = 0
x = 5
x + 3 = 0
x = -3
Option B has a solution by one of its factors as a positive value of 5
C) 0 = 2(x − 5)2 + 3
0 = 2(x - 5) × 5
0 = (2x -10) × 5
0 = 10x -50
-10x = -50
x = -50/-10
x = 5
Option C has a solution of 5
D) 0 = 2(x + 5)(x + 3)
Take each of the factors and equate to zero
0 = 2
= 0
x + 5 = 0
x = -5
x + 3 = 0
x = -3
For option D, all the values of x are 0, or negative values of -5 and -3.
Therefore the Quadratic Equation for option D has no solution.
We're looking for the two values being subtracted here. One of these values is easy to find:
<span>g(1) = ∫f(t)dt = 0</span><span>
since taking the integral over an interval of length 0 is 0.
The other value we find by taking a Left Riemann Sum, which means that we divide the interval [1,15] into the intervals listed above and find the area of rectangles over those regions:
</span><span>Each integral breaks down like so:
(3-1)*f(1)=4
(6-3)*f(3)=9
(10-6)*f(6)=16
(15-10)*f(10)=10.
So, the sum of all these integrals is 39, which means g(15)=39.
Then, g(15)-g(1)=39-0=39.
</span>
I hope my answer has come to your help. God bless and have a nice day ahead!