Answer:
15.67 m/s
Explanation:
The ball has a projectile motion, with a horizontal uniform motion with constant speed and a vertical accelerated motion with constant acceleration g=9.8 m/s^2 downward.
Let's consider the vertical motion only first: the vertical distance covered by the ball, which is S=50 m, is given by

where t is the time of the fall. Substituting S=50 m and re-arranging the equation, we can find t:

Now we now that the ball must cover a distance of 50 meters horizontally during this time, in order to fall inside the carriage; therefore, the velocity of the carriage should be:

Answer: The magnitude of impulse imparted to the ball by the golf club is 2.2 N seconds
Explanation:
Force applied on the golf ball = 
Mass of the ball = 0.05 kg
Velocity with which ball is accelerating = 44 m/s
Time period over which forece applied = t


Newton seconds
The magnitude of impulse imparted to the ball by the golf club is 2.2 N seconds
As it was explained in the Introductory Article on the Electromagnetic Spectrum, electromagnetic radiation can be described as a stream of photons, each traveling in a wave-like pattern, carrying energy and moving at the speed of light. In that section, it was pointed out that the only difference between radio waves, visible light and gamma rays is the energy of the photons. Radio waves have photons with the lowest energies. Microwaves have a little more energy than radio waves. Infrared has still more, followed by visible, ultraviolet, X-rays and gamma rays.
That should be able to help answer your question :)
Answer
The intensity of a sound wave depends on the pressure of the wave,density of the medium and speed of sound in the medium. Higher density and higher sound speed both give a lower intensity. and may be it is because that sound wave is more characterize by wavelength than frequency..explanation
Explanation:
As decibel levels get higher, sound waves have greater intensity and sounds are louder. For every 10-decibel increase in the intensity of sound, loudness is 10 times greater. Intensity of sound results from two factors: the amplitude of the sound waves and how far they have traveled from the source of the sound.
As we know,

so, let's solve for charge (q) :
time = 5 minutes = 5 × 60 seconds = 300 seconds.
hence, the charge = 60 coulombs (C)