<h3><u>Given </u><u>:</u><u>-</u></h3>
- The mass of the body is doubled
- The height of the body is constant
<h3><u>Solution </u><u>:</u><u>-</u><u> </u></h3>
We know that ,
Potential energy = mgh
<u>Therefore</u><u>, </u>
We can say that,
PE is directly proportional to Mass of the body
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
PE of the body = 2m * g * h. ...eq( I)
From (I) , we can conclude that, If mass of the body get doubled then its PE will also be doubled .
Answer:
Converted to an amount of energy equal to 4 million tons times the speed of light squared. ejected into space in a solar wind.
Explanation:
The 4 million tons of mass is converted to the amount of energy that is equal to 4 million tons times the speed of light squared. This energy moves from the sun with the help of solar winds and received by the planets present in the solar system. This solar energy moves in the form of solar radiation because there is no medium for propagation so that's why we can say that the mass is converted into energy that moves in the form of radiation in discrete packets.
Objects in space follow the laws or rules of physics, just like objects on Earth do. Things in space have inertia. That is, they travel in a straight line unless there is a force that makes them stop or change. The movement of things in space is influenced by gravity.