Answer: Object B
Explanation: Acceleration is directly proportional to force and inversely proportional to mass. It implies that more massive objects accelerates at a slower rate.
Well, if you're using the law to work with periods of Earth satellites,
then the most convenient unit is going to be 'hours' for the largest
orbits, or 'minutes' for the LEOs.
But if you're using it to work with periods of planets, asteroids, or
comets, then you'd be working in days or years.
Answer:
6200 J
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
The car is initially stationary. The truck and car stick together after the collision, so they have the same final velocity. Therefore:
m₁ u₁ = (m₁ + m₂) v
Solving for the truck's initial velocity:
(2700 kg) u = (2700 kg + 1000 kg) (3 m/s)
u = 4.11 m/s
The change in kinetic energy is therefore:
ΔKE = ½ (m₁ + m₂) v² − ½ m₁ u²
ΔKE = ½ (2700 kg + 1000 kg) (3 m/s)² − ½ (2700 kg) (4.11 m/s)²
ΔKE = -6200 J
6200 J of kinetic energy is "lost".
The equation for force is F=ma. Because we have the value of mass (0.42 kg) and the acceleration (14.8 m/s^2), simply plug them into the equation for force to get

The answer is 6.22 N because newtons are the unit used to measure force.