Answer:
the extension would be less the new extension might be 3 cm
Explanation:
Answer:
Technician A and Technician B are correct.
Explanation:
Answer:
Energy = 0.25 kilowatt-hour
Explanation:
Given the following data;
Power = 25 Watts
Time = 10 hours
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
To find the energy consumed;
Energy = power * time
Substituting into the formula, we have;
Energy = 25 * 10
Energy = 250 Watt-hour
To convert to kilowatt-hour, we would divide by 1000;
Energy = 250/1000
Energy = 0.25 kilowatt-hour
Answer:



Explanation:
Given
at 
Point: 
,
-- Missing Information
Required
Determine the parametric equations

Differentiate with respect to t

Let t = 1 (i.e
)





To solve for x, y and z, we make use of:

This implies that:

So, we have:


By comparison:

Divide by i

Divide by j


Divide by k

Hence, the parametric equations are:



Based on the answer provided, it seems the writer wanted you to assume that the energy loss per plank is constant. This is not the same as the bullet losing <span><span>1/nth</span><span>1/nth</span></span><span> of its velocity per plank (however, the fact that the question does not mention this assumption arguably makes the question ambiguous).
</span><span>With this assumption, the energy loss becomes
</span><span>
ΔE = <span>1/2 </span>m<span>v2 </span>− <span>1/2 </span>m <span><span>(<span>v−<span>v/n</span></span>) </span><span>2
</span></span></span>
and the number of planks <span>NN</span><span> becomes
</span>
N = <span><span><span>1/2</span>m<span>v2 /</span></span><span>ΔE </span></span>= <span><span>n2/ </span><span>2n−1
</span></span>
Otherwise, if you assume that the bullet loses <span><span>1/<span>nth</span></span><span>1/<span>nth</span></span></span><span> of its velocity per plank, then the answer is </span><span><span>N=∞</span></span><span><span>
</span>
</span>