Idk but it can't be 10 or 9.7 bc a triangle's hypotenuse is always longer than its legs
<h3>
Answer: C) incenter</h3>
========================================
Explanation:
If you were to intersect the angle bisectors (at least two of them), then you would locate the incenter. The incenter is the center of the incircle which is a circle where it is as large as possible, but does not spill over and outside the triangle. Therefore this circle fits snugly inside the triangle.
--------------
extra notes:
* The centroid is found by intersecting at least two median lines
* The circumcenter is found by intersecting at least two perpendicular bisector lines
* The orthocenter is found by intersecting at least two altitude lines
* The incenter is always inside the triangle; hence the "in" as part of the name. The centroid shares this property as well because the medians are completely contained within any triangle. The other two centers aren't always guaranteed to be inside the triangle.
* The red lines cut each angle of the triangle into two equal or congruent pieces.
The way that I memorised how to do sin, cos, and tan is by the following: SOH, CAH, TOA
SOH = Sin is OPPOSITE / HYPOTENUSE
CAH = Cos is ADJACENT / HYPOTENUSE
TOA = Tan is OPPOSITE / ADJACENT
For example if we were to solve question 5
Sin T = 6 root 2 / 19
Cos T = 17 / 19
Tan T = 6 root 2 / 17
Repeat the steps for question 6
For the rest of the questions (7,8,9) you have to take the information given and figure out if you should us Sin, cos, or Tan. then plug the numbers in the calculator and while doing sin ^ -1, cos ^ -1, tan ^ -1
for example on question 7, to find the angle x they have given you the hypotenuse and the adjacent side so
cos x = 9 / 18
to find x plug: cos^-1 (9/18) in the calculator
Answer:
0.362
Step-by-step explanation:
When drawing randomly from the 1st and 2nd urn, 4 case scenarios may happen:
- Red ball is drawn from the 1st urn with a probability of 9/10, red ball is drawn from the 2st urn with a probability of 1/6. The probability of this case to happen is (9/10)*(1/6) = 9/60 = 3/20 or 0.15. The probability that a ball drawn randomly from the third urn is blue given this scenario is (1 blue + 5 blue)/(8 red + 1 blue + 5 blue) = 6/14 = 3/7.
- Red ball is drawn from the 1st urn with a probability of 9/10, blue ball is drawn from the 2nd urn with a probability of 5/6. The probability of this event to happen is (9/10)*(5/6) = 45/60 = 3/4 or 0.75. The probability that a ball drawn randomly from the third urn is blue given this scenario is (1 blue + 4 blue)/(8 red + 1 blue + 1 red + 4 blue) = 5/14
- Blue ball is drawn from the 1st urn with a probability of 1/10, blue ball is drawn from the 2nd urn with a probability of 5/6. The probability of this event to happen is (1/10)*(5/6) = 5/60 = 1/12. The probability that a ball drawn randomly from the third urn is blue given this scenario is (4 blue)/(9 red + 1 red + 4 blue) = 4/14 = 2/7
- Blue ball is drawn from the 1st urn with a probability of 1/10, red ball is drawn from the 2st urn with a probability of 1/6. The probability of this event to happen is (1/10)*(1/6) = 1/60. The probability that a ball drawn randomly from the third urn is blue given this scenario is (5 blue)/(9 red + 5 blue) = 5/14.
Overall, the total probability that a ball drawn randomly from the third urn is blue is the sum of product of each scenario to happen with their respective given probability
P = 0.15(3/7) + 0.75(5/14) + (1/12)*(2/7) + (1/60)*(5/14) = 0.362
Yhjtjhjtgjtbnj vghjghjytgtgjnc njc tgyjtcgtc