Not of Bernoulli type, but still linear.

There's no need to find an integrating factor, since the left hand side already represents a derivative:
![\dfrac{\mathrm d}{\mathrm dx}[(1+x^2)y]=(1+x^2)\dfrac{\mathrm dy}{\mathrm dx}+2xy](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%281%2Bx%5E2%29y%5D%3D%281%2Bx%5E2%29%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%2B2xy)
So, you have
![\dfrac{\mathrm d}{\mathrm dx}[(1+x^2)y]=4x^2](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%281%2Bx%5E2%29y%5D%3D4x%5E2)
and integrating both sides with respect to

yields


Answer:domain 4 range 6
Step-by-step explanation:
Answer:
a[n] = a[n-1]×(4/3)
a[1] = 1/2
Step-by-step explanation:
The terms of a geometric sequence have an initial term and a common ratio. The common ratio multiplies the previous term to get the next one. That sentence describes the recursive relation.
The general explicit term of a geometric sequence is ...
a[n] = a[1]×r^(n-1) . . . . . where a[1] is the first term and r is the common ratio
Comparing this to the expression you are given, you see that ...
a[1] = 1/2
r = 4/3
(You also see that parenthses are missing around the exponent expression, n-1.)
A recursive rule is defined by two things:
- the starting value(s) for the recursive relation
- the recursive relation relating the next term to previous terms
The definition of a geometric sequence tells you the recursive relation is:
<em>the next term is the previous one multiplied by the common ratio</em>.
In math terms, this looks like
a[n] = a[n-1]×r
Using the value of r from above, this becomes ...
a[n] = a[n-1]×(4/3)
Of course, the starting values are the same for the explicit rule and the recursive rule:
a[1] = 1/2
Answer:
It will take 55 years for the account value to reach 38200 dollars
Step-by-step explanation:
This is a simple interest problem.
The simple interest formula is given by:

In which E are the earnings, P is the principal(the initial amount of money), I is the interest rate(yearly, as a decimal) and t is the time.
After t years, the total amount of money is:
.
In this problem, we ahve that:

So
First we find how much we have to earn in interest.
.


How much time to earn this interest?




Rounding up
It will take 55 years for the account value to reach 38200 dollars