Answer:
9) Substitution Reaction
10) Covalent Bond
11) Ionic Bond
12) Covalent Bond
13) Ionic Bond
14) 9 atoms
Explanation:
9) Substitution Reaction: Substitution reaction is a chemical reaction in which one atom, ion or species replaced by another atom, ion or species
10) Covalent Bond: Covalent bond is a bond that formed between two nonmetals, when both the species are non metal, the electronegativity of both the nonmetals are comparatively same, hence any of both do not pulls completely electron of other & the bond is formed by the sharing of electron.
11) Ionic Bond: We know that nonmetals have high electronegativity than those of metals, due to high electronegativity non metals pulls the electrons of metals but there is enough interaction that non metal do not escape after pulling the electron, & an ionic bond generates where non metals possess negative charge & positive charge goes to metal.
12) Covalent Bond: The bond formed between two atoms having less electronegativity diffrence by sharing of electron pair is know as covalent bond. for e.g the Carbon - Hydrogen bond in methane (CH4) molecule is covalent bonded because the electronegativity of carbon is 2.5 & that of hydrogen is 2.1 which is almost close, hence the bond formed is covalent.
13) Ionic Bond: The bond formed between two atoms having high electronegativity diffrence & the bond formed is due to complete transfer of electron by one species. For e.g. NaCl the sodium is a metal having electronegativity 0.9 and chlorine is non metal having electronegativity 3.0 the electronegativity diffrence is too high, hence the chlorine behaves as Cl- ion that of sodium as Na+, both the components behaves as ion but they are bonded &that bond is called as Ionic bond.
14) 9 Atoms: One molecule of water (H2O) posses three atoms, two hydrogen atoms & one oxygen atom, the number of atoms in 3 molecules of water 3×3 = 9 atoms.
<em><u>Thanks for joining brainly community!</u></em>
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.
The answer is six because it is in group six A on the periodic table.
The answer is relative dating, btw