The given equation is
We need to solve the equation for q.
<u>Value of q:</u>
The value of q can be determined by solving the equation
for q.
Thus, subtracting both sides of the equation by r, we get;

Now, dividing both sides of the equation by b, we have;

Simplifying the terms, we get;

Therefore, the value of q is 
Hence, Option B is the correct answer.
Answer:
Step-by-step explanation:
area of smaller triangle=96×(3/12)²=96×1/16=6cm²
Answer:
Domain: (-infinity, +infinity) since you can pick any x values.
Range: [0, +infinity) since it does not go below the x axis.
Step-by-step explanation:
The graph is a parabola given by 
lets pick a few x values:
x = 1 gives us y = 1^2, which = 1
x = -1 gives us y = (-1)^2, which = 1
The parabola's domain is any x value as it extends to infinity.
For its range, you can see that it does not go below the x axis at x = 0. Therefore, the range of the parabola is from [0, infinity]
Interesting question. Good to know for computer science.
Suppose you have a function like
an = 3x - 2 Try the first couple
a1 = 3(1) - 2
a1 = 3 - 2
a1 = 1
a2 = 3(2) - 2
a2 = 6 - 2
a2 = 4 So each term differs by 3
a2 - a1 = 3
an = a_(n - 1) + 3
a3 = a2 + 3
a3 = 4 + 3
a3 = 7
a4 = a3 + 3
a4 = 7 + 3
a4 = 10
a5 = a4+ 3
a5 = 10 + 3
a5 = 13
I'll do one more and then check it.
a6 = a5 + 3
a6 = 13 + 3
a6 = 16
a6 = 3x -2
a6 = 3*6 - 2
a6 = 18 - 2
a6 = 16 which checks.
So the general formula is
an = a_(n - 1) * k if you were multiplying or
an = a_(n - 1) + k if you were adding. The key thing is that you are working with the previous term.