Answer:
The frequencies are 
Explanation:
From the question we are told that
The speed of the wave is 
The length of vibrating clothesline is 
Generally the fundamental frequency is mathematically represented as

=> 
=> 
Now this other frequencies of vibration experience by the clotheslines are know as harmonics and they are obtained by integer multiple of the fundamental frequency
So
The frequencies are mathematically represented as

=> 
Where n = 1, 2, 3 ....
Answer:
The intensity of light from the 1mm from the central maximu is 
Explanation:
From the question we are told that
The wavelength is 
The width of the slit is
The distance from the screen is 
The intensity at the central maximum is 
The distance from the central maximum is 
Let z be the the distance of a point with intensity I from central maximum
Then we can represent this intensity as
Now the relationship between D and z can be represented using the SOHCAHTOA rule i.e

if the angle between the the light at z and the central maximum is small
Then 
Which implies that

substituting this into the equation for the intensity
![I = I_o [\frac{sin [\frac{\pi w}{\lambda} \cdot \frac{z}{D} ]}{\frac{\pi w z}{\lambda D\frac{x}{y} } } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20%5B%5Cfrac%7Bsin%20%5B%5Cfrac%7B%5Cpi%20w%7D%7B%5Clambda%7D%20%5Ccdot%20%5Cfrac%7Bz%7D%7BD%7D%20%20%5D%7D%7B%5Cfrac%7B%5Cpi%20w%20z%7D%7B%5Clambda%20D%5Cfrac%7Bx%7D%7By%7D%20%7D%20%7D%20%5D)
given that 
We have that
![I = I_o [\frac{sin[\frac{3.142 * 0.45*10^{-3}}{(620 *10^{-9})} \cdot \frac{1*10^{-3}}{3} ]}{\frac{3.142 * 0.45*10^{-3}*1*10^{-3} }{620*10^{-9} *3} } ]^2](https://tex.z-dn.net/?f=I%20%3D%20I_o%20%5B%5Cfrac%7Bsin%5B%5Cfrac%7B3.142%20%2A%200.45%2A10%5E%7B-3%7D%7D%7B%28620%20%2A10%5E%7B-9%7D%29%7D%20%5Ccdot%20%5Cfrac%7B1%2A10%5E%7B-3%7D%7D%7B3%7D%20%5D%7D%7B%5Cfrac%7B3.142%20%2A%200.45%2A10%5E%7B-3%7D%2A1%2A10%5E%7B-3%7D%20%7D%7B620%2A10%5E%7B-9%7D%20%2A3%7D%20%7D%20%5D%5E2)
![=I_o [\frac{sin(0.760)}{0.760}] ^2](https://tex.z-dn.net/?f=%3DI_o%20%5B%5Cfrac%7Bsin%280.760%29%7D%7B0.760%7D%5D%20%5E2)

Answer:
No, it does not violate Newton's first law
Explanation:
Newton's first law of motion states that, "A body will continue in its state of rest or uniform motion in a straight unless acted up by a force to make it act otherwise" This means a force is required to initiate movement and also required to halt it.
For a skate positioned to roll down a bank, Here, the force of gravity acting on the skate acting downward will make the skate roll without having to push off the skate with a foot. Because the position of the skate doesn't balance the Gravitational force acting on it. Hence. The Gravitational force is enough to set the skate in motion.
Answer:
τ = 0.009 Nm
Explanation:
The torque applied on the tooth can be given by the following formula:

where,
τ = Torque on the tooth= ?
F = Force acting on tooth = 9 N
d = distance between force and tooth axis = 1 mm = 0.001 m
Therefore, using these values in the equation, we get:

<u>τ = 0.009 Nm</u>
The faster/slower one i think is faster because the colder the air, the closer the particals are, and for #2 it's because the door is condensed, and the atoms are closer, therefore meaning that the sound particals don't spread, like they would in air, they're more compact (meaning they're) easier to hear, or you just have a good listening ear.