Correct answer is D.
Explanation:
A) is not correct answer because this type of theory can not become law. Laws are properties that are same in any part of universe. Nebular theory is not correct for every part of universe.
B) is not correct answer because this theory could be replaced if some evidence show that some other theory is more likely to be correct.
C) is not correct answer because the study has been done on other nebulas in our galaxy. There are many nebulas and by obserwing them this theory was developed.
All will have a dominant trait I can't see the following statments
Answer: high temperature and low pressure
Explanation:
The Ideal Gas equation is:
Where:
is the pressure of the gas
is the volume of the gas
the number of moles of gas
is the gas constant
is the absolute temperature of the gas in Kelvin
According to this law, molecules in gaseous state do not exert any force among them (attraction or repulsion) and the volume of these molecules is small, therefore negligible in comparison with the volume of the container that contains them.
Now, real gases can behave approximately to an ideal gas, under the conditions described above and taking into account the following:
When <u>temperature is high</u> a real gas approximates to ideal gas, because the molecules move quickly, preventing the repulsion or attraction forces to take effect. In addition, at <u>low pressures</u>, the volume of molecules is negligible.
Initially, the velocity vector is
. At the same height, the x-value of the vector will be the same, and the y-value will be opposite (assuming no air resistance). Assuming perfect reflection off the ground, the velocity vector is the same. After 0.2 seconds at 9.8 seconds, the y-value has decreased by
, so the velocity is
.
Converting back to direction and magnitude, we get 
Answer:
Distance will be 49.34 m
Explanation:
We have given wavelength 
Diameter of the antenna d = 2.7 m
Range L = 7.8 km = 7800 m
We have to find the smallest distance hat two speedboats can be from each other and still be resolved as two separate objects D
We know that distance is given by 
So distance D will be 49.34 m