Answer:
Gibbs free energy equation
Explanation:
Answer:
Reagents: 1)
2)
, 
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane (
) to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "
". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of
on the
to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
I believe you are referring zero as the exponent. <span>Any number (except 0) with exponent 0 is defined to mean 1.
</span>
For one thing, there is a rule:
<span> a^m/ a^m = a^m-m = a^0
</span>But (when a is not equal to <span>0),
</span>
a^m/ a^m = 1
Therefore, we must define a^0 as 1.
Answer:
In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed.
Explanation:
That is what I think on the subject
Answer:
The value is 
Explanation:
From the question we are told that

The initial volume of the fluorocarbon gas is 
The final volume of the fluorocarbon gas is
The initial temperature of the fluorocarbon gas is 
The final temperature of the fluorocarbon gas is 
The initial pressure is 
The final pressure is 
Generally the equation for adiabatically reversible expansion is mathematically represented as
![T_2 = T_1 * [ \frac{V_1}{V_2} ]^{\frac{R}{C_v} }](https://tex.z-dn.net/?f=T_2%20%3D%20%20T_1%20%20%2A%20%5B%20%5Cfrac%7BV_1%7D%7BV_2%7D%20%5D%5E%7B%5Cfrac%7BR%7D%7BC_v%7D%20%7D)
Here R is the ideal gas constant with the value

So
=> 
Generally adiabatic reversible expansion can also be mathematically expressed as

=>
=> 
=>
So

=> 