Answer:
Q = -811440 J
Explanation:
Given data:
Mass of oil = 2.76 Kg (2.76× 1000 = 2760 g)
Initial temperature = 191 °C
Final temperature = 23°C
Specific heat capacity of oil = 1.75 J/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 23°C - 191 °C
ΔT = -168°C
Q = 2760 g ×1.75 J/g.°C ×-168°C
Q = -811440 J
Negative sign show heat is released.
The Roman numerals in a cation's name indicate: THE POSITIVE CHARGE ON THE CATION
Cations are metallic atoms that loosely hold it electrons, making it easy to lose electrons.
The Roman numerals in a cation's name not only indicates the charge on the cation but it makes it easier to distinguish cations that share the same metal name.
Consider this balanced chemical equation:
2 H2 + O2 → 2 H2O
We interpret this as “two molecules of hydrogen react with one molecule of oxygen to make two molecules of water.” The chemical equation is balanced as long as the coefficients are in the ratio 2:1:2. For instance, this chemical equation is also balanced:
100 H2 + 50 O2 → 100 H2O
This equation is not conventional—because convention says that we use the lowest ratio of coefficients—but it is balanced. So is this chemical equation:
5,000 H2 + 2,500 O2 → 5,000 H2O
Again, this is not conventional, but it is still balanced. Suppose we use a much larger number:
12.044 × 1023 H2 + 6.022 × 1023 O2 → 12.044 × 1023 H2O
These coefficients are also in the ratio of 2:1:2. But these numbers are related to the number of things in a mole: the first and last numbers are two times Avogadro’s number, while the second number is Avogadro’s number. That means that the first and last numbers represent 2 mol, while the middle number is just 1 mol. Well, why not just use the number of moles in balancing the chemical equation?
2 H2 + O2 → 2 H2O
Answer:
the answer should be A. the sum of all forces acting on an object
Explanation:
Explanation:
Carbon that is a part of rocks and fossil fuels like oil, coal, and natural gas may be held away from the rest of the carbon cycle for a long time. These changes add more greenhouse gases in our atmosphere and this causes climate change.