Answer:
i have no clue whats going on here but imma act like i do.....
Explanation:
Answer:
3. 116.5 V
4. 119.6 V
Explanation:
3. Determination of the voltage.
Resistance (R) = 25 Ω
Current (I) = 4.66 A
Voltage (V) =?
V = IR
V = 4.66 × 25
V = 116.5 V
Thus, the voltage is 116.5 V
4. Determination of the voltage.
Current (I) = 9.80 A
Resistance (R) = 12.2 Ω
Voltage (V) =?
V = IR
V = 9.80 × 12.2
V = 119.6 V
Thus, the voltage is 119.6 V
Hydrophobic molecules tend to be nonpolar molecules that group together to form micelles rather than be exposed to water. Hydrophobic molecules typically dissolve in nonpolar solvents (e.g., organic solvents).
Answer:
![[H^+]=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.00332M)
Explanation:
Hello,
In this case, considering the dissociation of valeric acid as:

Its corresponding law of mass action is:
![Ka=\frac{[H^+][C_5H_9O_2^-]}{[HC_5H_9O_2]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BC_5H_9O_2%5E-%5D%7D%7B%5BHC_5H_9O_2%5D%7D)
Now, by means of the change
due to dissociation, it becomes:

Solving for
we obtain:

Thus, since the concentration of hydronium equals
, the answer is:
![[H^+]=x=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.00332M)
Best regards.
Change in energy is E=hc/wavelength of emitted photon