1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
3 years ago
12

A 86g ball is dropped vertically to the floor from a height of 2.87m and bounces to a height of 1.28. What is the magnitude of t

he impulse received by the ball from the floor during the bounce
Physics
1 answer:
irga5000 [103]3 years ago
6 0

Answer:

The impulse received by the ball from the floor during the bounce is approximately 1.11329438 m·kg/s

Explanation:

The given mass of the ball, m = 86 g = 0.089 kg

The height from which the ball is dropped, H = 2.87 m

The height to which the ball bounces, h = 1.28 m

Mathematically, we have;

Δp = F·Δt

Where;

Δp = The change in momentum = m·Δv

F = The applied force

Δt = The time of contact with the force

The velocity of the ball just before it touches the ground, v₁ = -√(2·g·H)

The velocity with which the ball leaves, v₂ = √(2·g·h)

The change in momentum, Δp = m·(v₂ - v₁)

∴ Δp = m·(√(2·g·h) - (-√(2·g·H))) = m·(√(2·g·h) +√(2·g·H) )

The impulse, Δp, received by the ball from the floor during the bounce is given as follows;

Δp = 0.089 kg × (√(2 × 9.8 m/s² × 1.28 m) + √(2 × 9.8 m/s² × 2.87 m)) ≈ 1.11329438 m·kg/s

The impulse received by the ball from the floor during the bounce, Δp ≈ 1.11329438 m·kg/s

You might be interested in
Two parallel plates that are initially uncharged are separated by 1.7 mm, have only air between them, and each have surface area
yaroslaw [1]

Answer:

5.63\cdot 10^{-6} C

Explanation:

The capacitor of a parallel-plate capacitor is given by:

C=\epsilon_0 \frac{A}{d}

where

A is the area of each plate

d is the separation between the plates

\epsilon_0 is the vacuum permittivity

The energy stored in a capacitor instead is given by

U=\frac{1}{2}\frac{Q^2}{C}

where

Q is the charge stored in each plate

Substituting the expression we found for C inside the last formula,

U=\frac{1}{2}\frac{Q^2 d}{\epsilon_0 A}

And re-arranging it

Q=\sqrt{\frac{2U\epsilon_0 A}{d}}

Now if we substitute

d=1.7 mm=0.0017 m\\A=16 cm^2 = 16\cdot 10^{-4} m^2\\U = 1.9 J

We find the charge stored on the capacitor:

Q=\sqrt{\frac{2(1.9)(8.85\cdot 10^{-12})(16\cdot 10^{-4})}{0.0017}}=5.63\cdot 10^{-6} C

7 0
3 years ago
Car A hits car B (initially at rest and of equal mass) frombehind while going 35 m/s. Immediately after the collision, car Bmove
kolezko [41]

Answer:

The fraction of kinetic energy lost in the collision in term of the initial energy is 0.49.

Explanation:

As the final and initial velocities are known it is possible then the kinetic energy is possible to calculate for each instant.

By definition, the kinetic energy is:

k = 0.5*mV^2

Expressing the initial and final kinetic energy for cars A and B:

ki=0.5*maVa_{i}^2+0.5*mbVb_{i}^2

kf=0.5*maVa_{f}^2+0.5*mbVb_{f}^2

Since the masses are equals:

m=ma=mb

For the known velocities, the kinetics energies result:

ki=0.5*mVa_{i}^2

ki=0.5*m(35 m/s)^2=612.5m^2/s^2*m

kf=0.5*mbVb_{f}^2

kf=0.5*m(25 m/s)^2=312.5m^2/s^2*m

The lost energy in the collision is the difference between the initial and final kinectic energies:

kl=ki-kf

kl = 612.5m^2/s^2*m-312.5 m^2/s^2*m=300 m^2/s^2*m

Finally the relation between the lost and the initial kinetic energy:

kl/ki = 300 m^2/s^2 * m / 612.5 m^2/s^2 * m

kl/ki = 24/49=0.49

7 0
3 years ago
How much heat energy must be added to the gas to expand the cylinder length to 16.0 cm ?
Lapatulllka [165]

This question is incomplete, the complete question is;

A monatomic gas fills the left end of the cylinder in the following figure. At 300 K , the gas cylinder length is 14.0 cm and the spring is compressed by65.0 cm . How much heat energy must be added to the gas to expand the cylinder length to 16.0 cm ?

Answer:

the required heat energy is 16 J

Explanation:

Given the data in the question;

Lets consider the ideal gas equation;

PV = nRT

from the image, we calculate initial pressure;

Pi = ( 2000N/M × 0.06m) / 0.0008 m²

Pi = 15 × 10⁴ Pa

next we find Initial velocity

Vi = (0.0008 m²)(0.14) = 1.1 × 10⁻⁴ m²

now we find the number of moles

n = [(15 × 10⁴ Pa)(1.1 × 10⁻⁴ m²)] / 8.31 J/molK × 300K

N = 6.6 × 10⁻³ mol

next we calculate the final temperature;

Pf = ( 2000N/m × 0.08) / 0.0008 m²

Pf = 2 × 10⁵ Pa

Calculate the final Volume

Vf = (0.0008 m² × 0.16 m = 1.28 × 10⁻⁴ m³

we also determine the final temperature

T_{f} =  (2 × 10⁵ Pa × 1.28 × 10⁻⁴ m³) / 6.6 × 10⁻³ × 8.31 J/molK

T_{f}  = 466.8 K

so change in temperature ΔT

ΔT =  466.8 K - 300K = 166.8 K

we then calculate the change in thermal energy

ΔU = nCΔT

ΔU = ( 6.6 × 10⁻³ mol ) × 12.5 × 166.8K

ΔU = 13.761 J

C is the isochoric molar specific heat which is equal to 3R/2 for monoatomic

now we calculate the work done;

W = 1/2 × K( x_{i\\}² - x_{f\\}² )

W = 1/2 × ( 2000 N/m) ( 0.06² - 0.08² )

= - 2.8 J

and we then calculate the heat energy using the following expression;

Q = ΔU - W

we substitute

Q = 13.761 - (- 2.8 J)

Q = 13.761 + 2.8 J)

Q =  16 J

Therefore, the required heat energy is 16 J

5 0
2 years ago
The strength of the gravitational pull between two object's is determined by?
iogann1982 [59]
Mass and distance are the two factors
4 0
3 years ago
Read 2 more answers
A wire 1 mm in diameter is connected to one end of a wire of the same material 2 mm in diameter of twice the length. A voltage s
miskamm [114]

Answer:

T = 2 T₀

Explanation:

To answer this question let's write the expression for electrical conductivity

    σ = n e2 τ / m*

The relationship with resistivity is

       ρ = 1 /σ

Whereby the resistance

        R = ρ L / A = 1 /σ  L / A

We see that there is no explicit relationship between time and resistance, there is only a dependence on the life time (τ) that depends on the properties of the material, not on its diameter or length.

As also the average velocity or electron velocity of electrons is constant, the time to cross 2 mm in length is twice as long as the time to cross a mm in length

 T = 2 T₀

8 0
3 years ago
Other questions:
  • What did the greeks call the mineral they found and why?
    6·1 answer
  • A tennis player tosses a tennis ball straight up and then catches it after 1.77 s at the same height as the point of release. (a
    14·1 answer
  • What is the purpose of Physical Science?
    9·1 answer
  • The Americium nucleus, 241 95 Am, decays to a Neptunium nucleus, 237 93 Np, by emitting an alpha particle of mass 4.00260 u and
    14·1 answer
  • Car A with a mass of 725 kilograms is traveling east at an initial velocity of 15 meters/second. It collides head–on with car B,
    13·1 answer
  • In a Physics 111 laboratory experiment, a cart with a mass of 0.80 kg and a velocity of 0.50 m/s collides elastically into a sta
    8·1 answer
  • What is the frequency of a mechanical wave that has a
    8·1 answer
  • 0.000236 kg has how many<br> significant figures?
    10·1 answer
  • Plzzzzzzzzzzzzzzzzzzzzzzzzzz help 20 points
    7·2 answers
  • Explain why you press against the seat when you take off fast at the beginning of the roller coaster ride. (Hint: relates to New
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!