1) At the moment of being at the top, the piston will not only tend to push the penny up but will also descend at a faster rate at which the penny can reach in 'free fall', in that short distance. Therefore, at the highest point, the penny will lose contact with the piston. Therefore the correct answer is C.
2) To solve this problem we will apply the equations related to the simple harmonic movement, hence we have that the acceleration can be defined as

Where,
a = Acceleration
A = Amplitude
= Angular velocity
From a reference system in which the downward acceleration is negative due to the force of gravity we will have to



From the definition of frequency and angular velocity we have to




Therefore the maximum frequency for which the penny just barely remains in place for the full cycle is 2.5Hz
Answer:
Jesseca wanted to create a material that reflected most of the light that fell on it.
Explanation: The Graphite was the material in the passage that had reflected most of the light.
Answer:
water
Explanation:
both a monkey and a tree need water to survive.
Have a great day
When you draw an illustration for this problem, you would come up with the same drawing as shown in the picture. As the hot-air balloon travels upwards, there is a slight time when the bag of sand rises up until it reaches the maximum height. Then, it goes back down to the ground. The total time would be t₁ + t₂. The solution is as follows:
H = v₀²/2g = (2.45)²/2(9.81) = 0.306 m
t₁ = H/v₀ = 0.306 m/2.45 m/s = 0.125 s
t₂ = √2(H + 98.8)/g = √2(0.306+ 98.8)/9.81
t₂ = 4.495 s
Total time = 0.125 s + 4.495 s = 4.62 seconds
Answer:
38.67 N
Explanation:
v = Final velocity = 40 m/s
u = Initial velocity
m = Mass of ball = 0.145kg
s = Displacement of ball = 3 m
Equation of motion

F=ma

∴ Average force that a baseball pitcher's hand exerts on the ball is 38.67 N