Answer:
Option D: Four times the original speed.
Explanation:
A centripetal force accelerates a body by changing the direction of the body's velocity without changing the body's speed.
The speed(v) is therefore constant, thereby making the magnitudes of the of the acceleration and the force constant.
The formula used to calculate the Centripetal force is given below:

where F represents the Centripetal force, m represents the mass of the moving body, v represents the speed or velocity at which the body is moving and r represents the radius.
Making the speed the subject of the formula: 
Therefore, when the radius (r) is changed to 4r, i.e r = 4r
speed(v) becomes 
After comparing, the difference between the speeds is Four times the original speed.
Answer:
0.074 V
Explanation:
Parameters given:
Number of turns, N = 121
Radius of coil, r = 2.85 cm = 0.0285 m
Time interval, dt = 0.179 s
Initial magnetic field strength, Bin = 55.1 mT = 0.0551 T
Final magnetic field strength, Bfin = 97.9 mT = 0.0979 T
Change in magnetic field strength,
dB = Bfin - Bin
= 0.0979 - 0.0551
dB = 0.0428 T
The magnitude of the average induced EMF in the coil is given as:
|Eavg| = |-N * A * dB/dt|
Where A is the area of the coil = pi * r² = 3.142 * 0.0285² = 0.00255 m²
Therefore:
|Eavg| = |-121 * 0.00255 * (0.0428/0.179)|
|Eavg| = |-0.074| V
|Eavg| = 0.074 V
Answer:
37.545 m/s
Explanation:
f' = Actual frequency of horn = 269 Hz
f = Observed frequency of horn = 290 Hz
v = Speed of sound in air = 343 m/s
= Speed of second train = 13.7 m/s
= Speed of first train
From Doppler effect we have

The speed of the first train is 37.545 m/s
If the kinetic energy of each ball is equal to that of the other,
then
(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²
Multiply each side by 2:
(mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²
Divide each side by (mass of gb) and by (speed of ppb)² :
(mass of ppb)/(mass of gb) = (speed of gb)²/(speed of ppb)²
Take square root of each side:
√ (ratio of their masses) = ( 1 / ratio of their speeds)²
By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written. Let's just come in from the
cold, and say it the clear, easy way:
If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.
If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.
The pingpong ball is moving faster than the golf ball.
The directions of their motions are irrelevant.
Answer:
Final velocity at the top of the ramp is 6.58m/s
Explanation
Check the attachment