To solve this problem we will apply the concepts given by the principles of superposition, specifically those described by Bragg's law in constructive interference.
Mathematically this relationship is given as

Where,
d = Distance between slits
= Wavelength
n = Any integer which represent the number of repetition of the spectrum

Calculating the value for n, we have
n = 1

n=2

n =3

Therefore the intensity of light be maximum for angles 23.3° and 52.28°
C. endothermic
An endothermic process takes heat from the surroundings while an exothermic process gives out heat to the surroundings.
The answer is D hope it helps
Answer:
The acceleration required by the rocket in order to have a zero speed on touchdown is 19.96m/s²
The rocket's motion for analysis sake is divided into two phases.
Phase 1: the free fall motion of the rocket from the height 2.59*102m to a height 86.9m
Phase 2: the motion of the rocket due to the acceleration of the rocket also from the height 86.9m to the point of touchdown y = 0m.
Explanation:
The initial velocity of the rocket is 0m/s when it started falling from rest under free fall. g = 9.8m/s² t1 is the time taken for phase 1 and t2 is the time taken for phase2.
The final velocity under free fall becomes the initial velocity for the accelerated motion of the rocket in phase 2 and the final velocity or speed in phase 2 is equal to zero.
The detailed step by step solution to the problems can be found in the attachment below.
Thank you and I hope this solution is helpful to you. Good luck.
Answer:
The appropriate response will be "Length must be increased by 0.012%".
Explanation:
The given values is:
ΔT = 5 s/day
Now,
⇒ 
On multiplying both sides by "100", we get
⇒ 
⇒
(%)
∵ 
On substituting the values, we get
⇒
% =
%
On applying cross multiplication, we get
⇒
% =
%
⇒ = 
⇒ = 
⇒ =
%