1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
3 years ago
12

Find the missing sides of each triangle. Leave your answers in radical form

Mathematics
2 answers:
zmey [24]3 years ago
7 0

Answer:

youbhave give me more information.

choli [55]3 years ago
6 0

Answer:

incomplete question

please write the whole question or diagram of the question

You might be interested in
The problem is in the pictures, please show step by step how to do it. Thanks! :)
Rama09 [41]

Answer:

-4,-5/2

Step-by-step explanation:

2x^2+3x-20 =0

2x^2+8x-5x-20 =0

2x(x+4)-5(x+4) =0

(x+4)(2x-5) =0

Either,

x+4=0

x=-4

Or,

2x-5=0

2x=5

x=5/2

7 0
3 years ago
Read 2 more answers
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
3 years ago
Find the shaded area
SVETLANKA909090 [29]
I can't read your hand writing
8 0
3 years ago
Hey this is my first post, does anyone know how to do this and find V?
Dvinal [7]

Answer:

16

Step-by-step explanation:

8/1/2

8 divided by 1/2

8 x 2/1 = 16

8 0
3 years ago
Read 2 more answers
A semi circle has a radius 8.2 cm
zaharov [31]

Answer:

Step-by-step explanation:

Area=\frac{1}{2}*\pi *r^{2}\\\\=\frac{1}{2}*3.14*8.2*8.2\\\\=3.14*4.1*8.2\\

= 105.57

= 105.6 cm²

5 0
3 years ago
Read 2 more answers
Other questions:
  • Solve the system using the addition method.<br><br> 6x - 2y = 3<br><br> 2x + 3y = -5
    9·1 answer
  • Julia has 19 apples she want 15 more that 19 But less then 16
    9·1 answer
  • How do I leave this
    15·2 answers
  • A(-3, 0) B(2, 4) C(6, -1) D(1, -5) What is the perimeter and area of quadrilateral ABCD?
    7·1 answer
  • Determine: t(4) for t (x)=2x²-3/5
    15·1 answer
  • Why mathematics is neccessary for students?explain​
    8·1 answer
  • In triangle STU the measure of angle U ie 90°. TU=6.6 US=2.3 find the measure of angle S
    5·1 answer
  • Fourteen pounds of beans are distributed equally into 10 bags to give out at the food bank. How many pounds of beans are in each
    12·1 answer
  • What times 6/7 equals 1 whole ​
    12·2 answers
  • To the nearest tenth, the P( -2.1 &lt; z &lt; 0) is:
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!