Answer:
3.01 × 10^24 particles
Explanation:
According to Avagadro, in one mole of a substance, there are 6.02 × 10^23 atoms or particles.
Using the formula: N = n × NA
Where;
N= number of particles or atoms
n = number of moles
NA = Avagadro's constant or number
This means that for 5 moles of a substance, there will be:
5 × 6.02 × 10^23
= 30.1 × 10^23
= 3.01 × 10^24 particles
Answer:
Glucose will move from the solution B to the solution A
Explanation:
Given that:
Solution A contains 1% glucose, and,
Solution B contains 5% glucose
Diffusion is the net movement of the substance from the region of the higher concentration to the region of the lower concentration.
Thus, solution B contains more concentration of glucose as compared to solution A. <u>By the process of diffusion, the particle moves from higher concentration to lower concentration and thus, glucose will move from solution B to solution A.</u>
Answer:
False
Explanation:
Electric fields are invisible to the human eye, it is similar to magnetism and radio waves.
Answer:
The crushed tablet dissolves fastest among the three forms.
Explanation:
The experiment is aimed at determining the effect of surface area of reactants on reaction rate.
Sodium bicarbonate tablets are provided and divided into three groups of consisting of three trials each. The temperature of the water is kept constant at 20°C. The first group consists of three tablets of sodium bicarbonate dissolved in individual trials in water. The second group consists of three quarter tablets of sodium bicarbonate dissolved in individual trials in water. The third group consists of three crushed tablets of sodium bicarbonate dissolved in individual trials in water.
The results shows that the average time for the dissolution of the first group is 51 seconds; the second group is 42 seconds while the third group is 17 seconds.
Therefore, it can be concluded that increasing the surface area of reactants increases the rate of reaction. This is because more reactant molecules are exposed for dissolution by water with increase in surface area.