Answer:
Volume required = 0.327 L
Explanation:
Given data:
Volume in L = ?
Molarity of solution = 1.772 M
Mass of BaCl₂ = 123 g
Solution:
First of all we will calculate the number of moles of BaCl₂,
Number of moles = mass/molar mass
Number of moles = 123 g/ 208.23 g/mol
Number of moles = 0.58 mol
Now, given problem will solve by using molarity formula.
Molarity = number of moles / volume in L
1.772 M = 0.58 mol / Volume in L
Volume in L = 0.58 mol / 1.772 M
Volume in L = 0.327 L
Answer:
<h3>A. </h3>
Explanation:
Mechanical energy is energy in motion is the example of mechanical energy⚡
Answer:Obsidian is a rock and it does include minerals.
Explanation:
Answer:
1) No shift
2) No shift
3) Leftward shift
4)Rightward sifht
Explanation:
1) 2) Adding N or Removing N in the equilibrium will produce No shift, because of its solid state, the N is not contemplated in the equilibrium equation:
3) Increasing the volume produces a decrase in the preassure due to the expansion of the gases. This will cause a leftward shift, because the system will try to increase the moles of gas and in consecuence of this, also increase the preassure.
4) Decreasing the volume has the opposite effect of the item 3): the preassure will increase and the system will consume moles of gas to decrease it, producing a rightward shift.
Answer:
The specific heat of zinc is 0.361 J/g°C
Explanation:
<u>Step 1:</u> Data given
44.0 J needed
Mass of solid zinc = 10.6 grams
Initial temperature = 24.9 °C
Final temperature = 36.4 °C
<u>Step 2</u>: Calculate the specific heat of zinc
Q = m*c*ΔT
⇒ with Q = heat (in Joule) = 44.0 J
⇒ with m = the mass of the solid zinc = 10.6 grams
⇒ with c = the specific heat of the zinc = TO BE DETERMINED
⇒ with ΔT = The change in temperature = T2-T1 = 36.4 °C - 24.9 °C = 11.5 °C
44.0 J = 10.6 grams * c * 11.5°C
c = 44.0 J / (10.6g * 11.5 °C)
c = 0.361 J/g°C
The specific heat of zinc is 0.361 J/g°C