Answer:
D
Step-by-step explanation:
our basic Pythagorean identity is cos²(x) + sin²(x) = 1
we can derive the 2 other using the listed above.
1. (cos²(x) + sin²(x))/cos²(x) = 1/cos²(x)
1 + tan²(x) = sec²(x)
2.(cos²(x) + sin²(x))/sin²(x) = 1/sin²(x)
cot²(x) + 1 = csc²(x)
A. sin^2 theta -1= cos^2 theta
this is false
cos²(x) + sin²(x) = 1
isolating cos²(x)
cos²(x) = 1-sin²(x), not equal to sin²(x)-1
B. Sec^2 theta-tan^2 theta= -1
1 + tan²(x) = sec²(x)
sec²(x)-tan(x) = 1, not -1
false
C. -cos^2 theta-1= sin^2
cos²(x) + sin²(x) = 1
sin²(x) = 1-cos²(x), our 1 is positive not negative, so false
D. Cot^2 theta - csc^2 theta=-1
cot²(x) + 1 = csc²(x)
isolating 1
1 = csc²(x) - cot²(x)
multiplying both sides by -1
-1 = cot²(x) - csc²(x)
TRUE
Answer: it would be (2, -4) because if you flip it it will still be the same just at a different angle.
Step-by-step explanation:
Answer:x=1
Step-by-step explanation:
Answer:
v = 66/7
Step-by-step explanation:
Step 1: Write equation
-7v + 3 = -63
Step 2: Solve for <em>v</em>
<u>Subtract 3 on both sides:</u> -7v = -66
<u>Divide both sides by -7:</u> v = 66/7
Step 3: Check
<em>Plug in x to verify if it's a solution.</em>
-7(66/7) + 3 = -63
-66 + 3 = -63
-63 = -63
X=6....6(6-6)=4(6=6) 6(0)=0....0=\=4 6=6