1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivanshal [37]
3 years ago
15

Please answer correctly !!!!!!!!!!!!!!!!!!! Will mark brainliest !!!!!!!!!!!!!!!!!!

Mathematics
2 answers:
aalyn [17]3 years ago
8 0
<h3>Answer:  VT = 8</h3>

==========================================

Work Shown:

V is the midpoint of RT, so RV = VT

RV = 2x+4

VT = RV = 2x+4

RV+VT = RT ... by the segment addition postulate

RV+RV = RT ... replace VT with RV

2*(RV) = RT

2*(2x+4) = 8x .... plug in the given expressions

4x+8 = 8x

8 = 8x-4x

8 = 4x

4x = 8

x = 8/4

x = 2

Which means,

RV = 2x+4 = 2*2+4 = 8

VT = RV = 8

RT = 8x = 8*2 = 16

Note how

RV+VT = 8+8 = 16

which matches with the length of RT to help confirm our answer.

Ira Lisetskai [31]3 years ago
5 0

Answer:

\boxed{line \: vt \:  = 8.}

Step-by-step explanation:

if \:  \boxed{ line\: rt} = \boxed{ line\: rv}  + \boxed{ line\: vt}  = 8x \\ then \: \boxed{ line\: rv}  = \boxed{ line\: rt}  = 2x + 4 \\ hence \to \\ 2(2x + 4) = 8x \\ 4x + 8 = 8x \\ 4x = 8 \\  \boxed{x = 2} \\  \\ if \: x = 2  :then \:  \\ 2x + 4 = 2(2) + 4 = 8. \\ therefore \: \boxed{ line\: vt = 8.}

♨Rage♨

You might be interested in
Rick has 7 cats. Carrie has 14 cats. How many fewer cats does Rick have
podryga [215]

Answer:

14-7 and 7

Step-by-step explanation:

8 0
3 years ago
Find the perimeter of Triangle ABC with the verticies A(-5,5) B(3,-5) and C(-5,1
finlep [7]

Hello!
 
Let's calculate a distance between two points using the Pythagorean theorem:<span>

</span>d ^ 2_ {AB} = (x_ {B} - x_ {A}) ^ 2 + (y_ {B} - y_ {A}) ^ 2

Data:

x_B = 3 &#10;&#10;x_A = -5 &#10;&#10;y_B = -5 &#10;&#10;y_A = 5 &#10;&#10;d_ {AB} =?

Solving: distance from A to B

d^ 2_ {AB} = (x_ {B} - x_ {A}) ^ 2 + (y_ {B} - y_ {A}) ^ 2 &#10;&#10;d^ 2_ {AB} = (3 - (-5)) ^ 2 + (-5 - 5) ^ 2 &#10;&#10;d^ 2_ {AB} = (8) ^ 2 + (-10) ^ 2 &#10;&#10;d^ 2_ {AB} = 64 + 100 &#10;&#10;d^ 2_ {AB} = 164 &#10;&#10;d_{AB} = \sqrt {164} &#10;&#10;d_{AB} = \sqrt {2 ^ 2 * 41} &#10;&#10;\boxed {d_ {AB} = 2 \sqrt {41}}

<span>Solving:
 
distance from A to C</span>

d ^ 2_ {AC} = (x_ {C} - x_ {A}) ^ 2 + (y_ {C} - y_ {A}) ^ 2

Data:

x_C = -5&#10; &#10;x_A = -5&#10; &#10;y_C = 1 &#10;&#10;y_A = 5 &#10;&#10;d_ {AC} =?


d^ 2_ {AC} = (x_ {C} - x_ {A}) ^ 2 + (y_ {C} - y_ {A}) ^ 2 &#10;&#10;d^ 2_ {AC} = (-5 - (-5)) ^ 2 + (1 - 5) ^ 2 &#10;&#10;d^ 2_ {AC} = (0) ^ 2 + (-4) ^ 2  &#10;&#10;d^ 2_ {AC} = 0 + 16  &#10;&#10;d^ 2_ {AC} = 16 &#10;&#10;d_ {AC} = \sqrt {16} &#10;&#10;\boxed {d_ {AC} = 4}&#10;<span>
</span>

Solving:

distance from B to C

d^ 2_ {BC} = (x_ {C} - x_ {B}) ^ 2 + (y_ {C} - y_ {B}) ^ 2

Data:

x_C = -5 &#10;&#10;x_B = 3 &#10;&#10;y_C = 1 &#10;&#10;y_B = -5 &#10;&#10;d_ {BC} =?


d^ 2_ {BC} = (x_ {C} - x_ {B}) ^ 2 + (y_ {C} - y_ {B}) ^ 2&#10; &#10;d^ 2_ {BC} = (-5 - 3) ^ 2 + (1 - (-5)) ^ 2&#10;&#10;d^ 2_ {BC} = (-8) ^ 2 + (6) ^ 2  &#10;&#10;d^ 2_ {BC} = 64 + 36&#10;&#10;d^ 2_ {BC} = 100 &#10;&#10;d_ {BC} = \sqrt {100}&#10;&#10;\boxed {d_ {BC} = 10}

<span>Now let's calculate the perimeter of the triangle ABC, knowing that the perimeter is the sum of the sides, then:
</span>
p = d_ {AB} + d_ {AC} + d_ {BC}  &#10;&#10;

p = 2\sqrt {41} + 4 + 10

&#10;\boxed {\boxed {p = 14 + 2 \sqrt {41}}} \end {array}} \qquad \quad \checkmark
8 0
3 years ago
Calculate the limit values:
Nataliya [291]
A) This particular limit is of the indeterminate form,
\frac{ \infty }{ \infty }
if we plug in infinity directly, though it is not a number just to check.

If a limit is in this form, we apply L'Hopital's Rule.

's
Lim_{x \rightarrow \infty } \frac{ ln(x ^{2} + 1 ) }{x} = Lim_ {x \rightarrow \infty } \frac{( ln(x ^{2} + 1 ) ) '}{x ' }
So we take the derivatives and obtain,

Lim_ {x \rightarrow \infty } \frac{ ln(x ^{2} + 1 ) }{x} = Lim_{x \rightarrow \infty } \frac{ \frac{2x}{x^{2} + 1} }{1}

Still it is of the same indeterminate form, so we apply the rule again,

Lim_{x \rightarrow \infty } \frac{ ln(x ^{2} + 1 ) }{x} = Lim_{x \rightarrow \infty } \frac{ 2 }{2x}

This simplifies to,

Lim_{x \rightarrow \infty } \frac{ ln(x ^{2} + 1 ) }{x} = Lim_{x \rightarrow \infty } \frac{ 1 }{x} = 0

b) This limit is also of the indeterminate form,

\frac{0}{0}
we still apply the L'Hopital's Rule,

Lim_ {x \rightarrow0 }\frac{ tanx}{x} = Lim_ {x \rightarrow0 } \frac{ (tanx)'}{x ' }

Lim_ {x \rightarrow0 }\frac{ tanx}{x} = Lim_ {x \rightarrow0 } \frac{ \sec ^{2} (x) }{1 }

When we plug in zero now we obtain,

Lim_ {x \rightarrow0 }\frac{ tanx}{x} = Lim_ {x \rightarrow0 } \frac{ \sec ^{2} (0) }{1 } = \frac{1}{1} = 1
c) This also in the same indeterminate form

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } = Lim_ {x \rightarrow0 } \frac{ ({e}^{2x} - 1 - 2x)'}{( {x}^{2} ) ' }

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } = Lim_ {x \rightarrow0 } \frac{ (2{e}^{2x} - 2)}{ 2x }

It is still of that indeterminate form so we apply the rule again, to obtain;

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } = Lim_ {x \rightarrow0 } \frac{ (4{e}^{2x} )}{ 2 }

Now we have remove the discontinuity, we can evaluate the limit now, plugging in zero to obtain;

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } = \frac{ (4{e}^{2(0)} )}{ 2 }

This gives us;

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } =\frac{ (4(1) )}{ 2 }=2

d) Lim_ {x \rightarrow +\infty }\sqrt{x^2+2x}-x

For this kind of question we need to rationalize the radical function, to obtain;

Lim_ {x \rightarrow +\infty }\frac{2x}{\sqrt{x^2+2x}+x}

We now divide both the numerator and denominator by x, to obtain,

Lim_ {x \rightarrow +\infty }\frac{2}{\sqrt{1+\frac{2}{x}}+1}

This simplifies to,

=\frac{2}{\sqrt{1+0}+1}=1
5 0
3 years ago
X<br> 451<br> 412<br> 451<br> Find the value of x.<br> A. 42<br> 2<br> B. 4<br> C. 43<br> D. 43
marysya [2.9K]

Answer:

B. 4

Step-by-step explanation:

cos(45°) = x/4√2

√2/2 = x/4√2

x = 4√2•√2/2

x = 4

8 0
3 years ago
At 9:00 on Saturday morning, two bicyclists heading in opposite directions pass each other on a bicycle path.The bicyclist headi
ki77a [65]

rate of bicyclist heading north=20 km/hr

6 0
3 years ago
Read 2 more answers
Other questions:
  • If a store orders a total of 55 of flour, how many 25-pound bags does the store order
    13·2 answers
  • one afternoon, kassim's sandwhich shop sells 15 sandwiches in 45 minutes. if the shop counties to sell sandwiches at the same ra
    6·1 answer
  • The weekly fee for staying at the Pleasant Lake
    12·2 answers
  • Help me out, please. Getting really lost on this!!
    13·1 answer
  • Juarez scored 32 points in a basketball game. He scored twice as many baskets worth 3 points than baskets worth 2 points. How ma
    8·2 answers
  • Mike bought 7 new baseball cards to add to his collection. The next day his dog ate half of his collection. There are now only 4
    5·1 answer
  • Okay, After this i'm done asking for help. I hope..
    12·2 answers
  • 9 multiplied by 21 equals what
    10·2 answers
  • There is a bag filled with 3 blue, 4 red and 5 green marbles.
    10·1 answer
  • Eeeeeeeeeeeeeeeeeeeeeeee
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!