Answer:
When a solid turns to a gas.
Explanation:
Answer:
3
Explanation:
the answer is 3 because it is 3 for the o2 so 3 you <em>have </em><em>to </em><em>pay </em><em>more </em><em>attention </em><em>for </em><em>the </em><em>small </em><em>ditails </em>
Explanation:
it is the one you have selected because it is the only solid one
Answer:
2KCl + F₂ → 2KF + Cl₂
Explanation:
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
2KCl + F₂ → 2KF + Cl₂
In this equation mass of reactant and product is equal. There are 2 potassium 2 chlorine and fluorine atoms on both side of equation it means mass remain conserved.
All other options are incorrect because mass is not conserved.
Mg₂ + LiBr ---> LiMg + Br
In this equation mass of magnesium is more on reactant side.
Na +O₂ ---> Na₂O
In this equation there is more oxygen and less sodium on reactant side while there is more sodium and less oxygen on product side.
H₂O ---> H₂ + O₂
In this equation there is less oxygen on reactant side while more oxygen on product side.
Answer:
100Jkg/°C
Explanation:
Given parameters:
Mass of metal = 2kg
Amount of heat energy = 1600J
Initial temperature = 5°C
Final temperature = 13°C
Unknown:
Specific heat capacity of the metal = ?
Solution:
Specific heat capacity of a body is the amount of heat needed to raise the temperature of unit mass of a body by 1°C.
H = m x C x (T₂ - T₁ )
H is the amount of heat
m is the mass
C is the unknown specific heat capacity
T is the temperature
Insert the parameters and solve;
1600 = 2 x C x (13 - 5)
1600 = 16C
C = 100Jkg/°C