Answer:
the reactivity and the valence electrons
Explanation:
the reactivity of the elements would have played a significant role in why such elements were grouped together. the number of valence electrons dictates how reactive an element is - the less valence electrons the more reactive it is. the column, group 1 in which these elements are put together in, show that each of the elements have 1 valence electrons and are therefore reactive.
you can go on to further explain what valence electrons are, explain what the group numbers are associated with the valence electrons and how valence electrons effect reactivity. further this, talk about how the three elements have the same number of valence electrons and therefore were grouped together
Given:
P1 = 13.0 atm
T1 = 20 °C
T2 = 102 °C
Required:
P2 of oxygen
Solution:
At constant volume,
we can apply Gay-Lussac’s law of pressure and temperature relationship
P1/T1=P2/T2
(13.0 atm) / (20 °C)
= P2 / (102 °C)
P2 = 66.3 atm
The answer is not in the choices given.
So multiply number of moles x number of atoms/mole = 1.8066 x 10^24 atoms of H2. One mole of any gas at STP has a volume of 22.4 L. So first determine the number of moles of gas you have.
for example do 7

that 's what I think
Answer:
6L
Explanation:
<em>if it's 3L per 200kPa</em>
then it would be;
4L per 300kPa
5L per 400kPa
6L per 500kPa
that's how i'd work it out in my head, hope it helps, but not sure though!