Answer: the line Spectra of hydrogen lies between the ultra-violet, visible light and infra-red of the electro magnetic spectrum
Explanation:
Electromagnetic radiation spans an wide range of wavelengths and frequencies. This range is called the electromagnetic spectrum. The electromagnetic spectrum is generally divided into seven regions, in order of decreasing wavelength and increasing energy and frequency. The 7 regions includes; radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), X-rays and gamma rays.
lower-energy radiation, such as radio waves, is expressed as frequency while microwaves, infrared, visible and UV light are usually expressed as wavelength and finally, higher-energy radiation such as X-rays and gamma rays, is expressed in terms of energy per photon.
Therefore, hydrogen lies between the ultra-violet, visible light and infra-red region of the electro magnetic spectrum.
Answer:
Path length is the overall distance traveled following the path of where the object travel. ... Displacement is the distance from the starting point of the object to its final point irregardless where it travels.
The activation energy is the minimum amount of energy that particles must have in order for them to participate in a chemical reaction. During chemical reactions bonds are broken and formed. Particles must collide with sufficient energy in order for the initial bonds to be broken. The activation energy is that that initial minimum energy that the particles can have in order for the bonds to be broken. Stronger bonds would require more energy to be broken and therefore the activation energy for such would be higher.
Less reactive than Group<span> I </span>elements<span>. The reasoning for this is because it is </span>more<span> difficult to lose two electrons compared to losing just </span>one<span> electron. They mostly React with water to form alkaline solutions. ...Now This is because the smaller an atom the closer the outer electrons are to the nucleus.</span>
<h2>
Answer</h2>
Bromination:
Any reaction or process in which bromine (and no other elements) are introduced into a molecule.
Bromonium Ion:
The bromonium ion is formed when alkenes react with bromine. When the π cloud of the alkene (acting as a nucleophile) approaches the bromine molecule (acting as an electrophile), the σ-bond electrons of Br2 are pushed away, resulting in the departure of the bromide anion.(2)
Mechanism:
Step 1:
In the first step of the reaction, a bromine molecule approaches the electron-rich alkene carbon–carbon double bond. The bromine atom closer to the bond takes on a partial positive charge as its electrons are repelled by the electrons of the double bond. The atom is electrophilic at this time and is attacked by the pi electrons of the alkene [carbon–carbon double bond]. It forms for an instant a single sigma bond to both of the carbon atoms involved (2). The bonding of bromine is special in this intermediate, due to its relatively large size compared to carbon, the bromide ion is capable of interacting with both carbons which once shared the π-bond, making a three-membered ring. The bromide ion acquires a positive formal charge. At this moment the halogen ion is called a "bromonium ion".
Step 2:
When the first bromine atom attacks the carbon–carbon π-bond, it leaves behind one of its electrons with the other bromine that it was bonded to in Br2. That other atom is now a negative bromide anion and is attracted to the slight positive charge on the carbon atoms. It is blocked from nucleophilic attack on one side of the carbon chain by the first bromine atom and can only attack from the other side. As it attacks and forms a bond with one of the carbons, the bond between the first bromine atom and the other carbon atoms breaks, leaving each carbon atom with a halogen substituent.
In this way the two halogens add in an anti addition fashion, and when the alkene is part of a cycle the dibromide adopts the trans configuration.