Answer:
They're different - heat and thermal energy. ... The heat, in turn, speeds up the molecules within the pot and the water. If you place a thermometer in the water, as the water heats up, you can watch the temperature rise. Again, an increase in internal energy will result in an increase in temperature.
Answer:
A) The mass would be the same.
Explanation:
Since there is no loss of any particle to vapor during the phase change process from solid to liquid, the mass of the before and after the process will remain the same.
- In this way, the law of conservation of mass is obeyed.
- Mass is the amount of matter contained in a substance.
- Since there is no room for escape or matter loss, the mass will remain the same.
Answer:
The answer to your question is P = 0.18 atm
Explanation:
Data
mass of O₂ = 0.29 g
Volume = 2.3 l
Pressure = ?
Temperature = 9°C
constant of ideal gases = 0.082 atm l/mol°K
Process
1.- Convert the mass of O₂ to moles
16 g of O₂ -------------------- 1 mol
0.29 g of O₂ ---------------- x
x = (0.29 x 1)/16
x = 0.29/16
x = 0.018 moles
2.- Convert the temperature to °K
Temperature = 9 + 273 = 282°K
3.- Use the ideal gas law ro find the answer
PV = nRT
-Solve for P
P = nRT/V
-Substitution
P = (0.018 x 0.082 x 282) / 2.3
-Simplification
P = 0.416/2.3
-Result
P = 0.18 atm