(2.03x10^22)/(6.02x10^23) = .033721 mol Li
I hope this helps, if not, i am sorry
Answer:
1.5e+8 atoms of Bismuth.
Explanation:
We need to calculate the <em>ratio</em> of the diameter of a biscuit respect to the diameter of the atom of bismuth (Bi):

For this, it is necessary to know the values in meters for any of these diameters:


Having all this information, we can proceed to calculate the diameters for the biscuit and the atom in meters.
<h3>Diameter of an atom of Bismuth(Bi) in meters</h3>
1 atom of Bismuth = 320pm in diameter.

<h3>Diameter of a biscuit in meters</h3>

<h3>Resulting Ratio</h3>
How many times is the diameter of an atom of Bismuth contained in the diameter of the biscuit? The answer is the ratio described above, that is, the ratio of the diameter of the biscuit respect to the diameter of the atom of Bismuth:





In other words, there are 1.5e+8 diameters of atoms of Bismuth in the diameter of the biscuit in question or simply, it is needed to put 1.5e+8 atoms of Bismuth to span the diameter of a biscuit in a line.
Kc' =Kc^1/3
=3√0.0061
=0.182716013
Answer:
During charging by conduction, both objects acquire the same type of charge. If a negative object is used to charge a neutral object, then both objects become charged negatively. In order for the neutral sphere to become negative, it must gain electrons from the negatively charged rod. 3.
Since water is already at 100<span>°C all the energy is used to evaporate it.
Now we can calculate how many </span>mols of water are evaporated with 820kJ.

We calculated that we got 20 mols of water evaporated. Now, all we have to do is find how many grams is a mol of water. Molar mass of water is <span>20.16 g/mol.
</span>The final answer is: