All the elements you listed share a common trait: they are synthetic, radioactive elements. These elements do not have a stable isotope, so for a radioactive element, its most stable isotope's atomic mass will be listed in parentheses.
One such example would be plutonium. This element has 6 different isotopes with differing half-lives. The most stable isotope for plutonium is plutonium-244, with a half-life of around 80 million years. Therefore, the atomic mass listed for plutonium will be (244).
The energy that is lost from the generator becomes “unusable”. This energy was emitted as heat or mechanical energy, rather than electrical energy. Energy can never be destroyed, and it wouldn’t be considered lost if it was converted into the intended product.
Explanation:
nose amigo, la verdad yo también tengo dificultades escolares muchísimas gracias, Dios te bendiga en otro idioma por cierto mi anime favorito es cowboy beboop
Answer:
110.25grams
Explanation:
The balanced chemical equation is as follows:
H2SO4 + 2NaOH → Na2SO4 + 2H20
Based on the balanced chemical equation of the reaction given above, 1 mole of sulphuric acid (H2SO4) is required to react with 2 moles of sodium hydroxide (NaOH).
Hence, if 1 mol of H2SO4 is needed to react with 2 moles of NaOH
Then, 2.25mol of NaOH will be required to react with;
= 2.25/2
= 1.125mol of H2SO4
Using the formula, mole = mass/molar mass, we can convert the molar value of H2SO4 to its mass value.
Molar mass of H2SO4 = 1(2) + 32 + 16(4)
= 2 + 32 + 64
= 34 + 64
= 98g/mol
Therefore, mole = mass/molar mass
1.125 = mass/98
mass = 98 × 1.125
mass = 110.25grams of H2SO4