Answer : The partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
Explanation :
According to the Dalton's Law, the partial pressure exerted by component 'i' in a gas mixture is equal to the product of the mole fraction of the component and the total pressure.
Formula used :


So,

where,
= partial pressure of gas
= mole fraction of gas
= total pressure of gas
= moles of gas
= total moles of gas
The balanced decomposition of ammonia reaction will be:

Now we have to determine the partial pressure of
and 

Given:


and,

Given:


Thus, the partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
The answer is C. Life
Hope this helps! :)
Answer:
Breaker A
Explanation:
Because the temperature is cooler in A then the rest
Mass of copper : 0.165 g
<h3>Further explanation</h3>
Given
5.0 A over 100 seconds
Required
Mass of copper
Solution
Faraday's law:
<em>The mass of the substance formed at each electrode is proportional to the electric current flowing in the electrolysis</em>
<em />
<em />
e = Ar / valence = eqivalent weight
i = current
t = time
W = weight
CuSO₄ ----> Cu²⁺ + SO₄²⁻
Cu ----> Cu²⁺ + 2e
e = Ar/2
= 63,5/2 = 31,75

<span>d. tightly packed particles</span>