Answer:
Answer: The side in the image that corresponds to Side length TV in the pre-image is TV
Step-by-step explanation:
Equation of the straight line can be given in more form. The most common forms are implicit (general or standard) form ax+by+c=0 and explicit form y=kx+i, where k is line coefficient and l is cut which line made on the y axis. If k>0 then the angle that takes straight line with the positive direction to the x axis is sharp and if k<0 then the angle that takes straight line with positive direction to the x axis is obtuse. In you case you only need to form one monomial with variable y in the given equation in the following way: 3x-4y+7=3y => add to both side (-3y) and you get 3x-4y-3y+7=3y-3y finally we get implicit or general 3x-7y+7=0. If is it necessary to transform from the implicit into the explicit form we will do this in the following way: 3x-7y+7=0 add to both side expression (-3x-7) => 3x-3x-7y+7-7=-3x-7 => divide both side with (-7) => y= (-3x-7)/ (-7) => finally we get y=3/7 x + 1 ( in our case coefficient of direction k=3/7 and the cut which line is made3 on the y axis l=1). Its display in the decartes coordinate system is given in one of the already given answers.
You would round it to
320 million
She starts off with $10.25 and gets a raise of $0.50, so she earns $10.75 per hour. Then she gets a raise of 10%, so then 10.75 x 0.10 = 1.075, so she earns $11.825 per hour. Then her third raise is $0.50 so she earns $12.325 per hour. The raise for next summer is 5%, so 12.325 x 0.05 = 0.61625, so she earns $12.94125.
She will earn about $12.94 per hour starting off next summer.
We' supposed to indicate which statement is true/false.
Note that, if a sample size is 40 or over, we can use the t distribution even with skewed data. So it's not highly sensitive to non-normality of the population from which samples are taken. So statement A is false.
It's true that the t-distribution assumes that the population from which samples are drawn is normally distributed. So B is true.
For skewed data or with extreme outliers, we can't use the t distribution. We only use t distribution as long as we believe that the population from which samples are drawn is closed to a bell-shape. So C is true.
Lastly, statement D is against statement C. So D is false.