The 1st one
-4 - (-5) equals 1
9514 1404 393
Answer:
- Constraints: x + y ≤ 250; 250x +400y ≤ 70000; x ≥ 0; y ≥ 0
- Objective formula: p = 45x +50y
- 200 YuuMi and 50 ZBox should be stocked
- maximum profit is $11,500
Step-by-step explanation:
Let x and y represent the numbers of YuuMi and ZBox consoles, respectively. The inventory cost must be at most 70,000, so that constraint is ...
250x +400y ≤ 70000
The number sold will be at most 250 units, so that constraint is ...
x + y ≤ 250
Additionally, we require x ≥ 0 and y ≥ 0.
__
A profit of 295-250 = 45 is made on each YuuMi, and a profit of 450-400 = 50 is made on each ZBox. So, if we want to maximize profit, our objective function is ...
profit = 45x +50y
__
A graph is shown in the attachment. The vertex of the feasible region that maximizes profit is (x, y) = (200, 50).
200 YuuMi and 50 ZBox consoles should be stocked to maximize profit. The maximum monthly profit is $11,500.
Call x as the number of months that Marc and Corinna have the same number of book.
45 +4x= 61 +2x
4x- 2x= 61-45
2x= 16
x= 8
Answer:
below
Step-by-step explanation:
76.98
Answer:
- 4m - 2r - 25
Step-by-step explanation:
-8m + (-15) + 4m - 2r - 10
- 8m - 15 + 4m - 2r - 10
collect the like terms beginning with the positives
4m - 8m - 2r - 10 - 15
- 4m - 2r - 25