Answer:
Simplifying
lx2 + mx + n = 0
Solving
lx2 + mx + n = 0
Solving for variable 'l'.
Move all terms containing l to the left, all other terms to the right.
Add '-1mx' to each side of the equation.
lx2 + mx + -1mx + n = 0 + -1mx
Combine like terms: mx + -1mx = 0
lx2 + 0 + n = 0 + -1mx
lx2 + n = 0 + -1mx
Remove the zero:
lx2 + n = -1mx
Add '-1n' to each side of the equation.
lx2 + n + -1n = -1mx + -1n
Combine like terms: n + -1n = 0
lx2 + 0 = -1mx + -1n
lx2 = -1mx + -1n
Divide each side by 'x2'.
l = -1mx-1 + -1nx-2
Simplifying
l = -1mx-1 + -1nx-2
Step-by-step explanation:
Hope this helped you!
Answer:
-1.2
Step-by-step explanation:
Answer:
<em>The largest rectangle of perimeter 182 is a square of side 45.5</em>
Step-by-step explanation:
<u>Maximization Using Derivatives</u>
The procedure consists in finding an appropriate function that depends on only one variable. Then, the first derivative of the function will be found, equated to 0 and find the maximum or minimum values.
Suppose we have a rectangle of dimensions x and y. The area of that rectangle is:

And the perimeter is

We know the perimeter is 182, thus

Simplifying

Solving for y

The area is

Taking the derivative:

Equating to 0

Solving

Finding y

The largest rectangle of perimeter 182 is a square of side 45.5
Answer:
f(-6)=10
Step-by-step explanation:
because it is listed in the coordinates.