1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivanzaharov [21]
3 years ago
12

Which type of heat transfer causes air movement between land and ocean?

Physics
1 answer:
sergey [27]3 years ago
6 0

There are three methods of heat travel:

CONDUCTION -- The transfer of heat through a medium. This is how we cook food on top of a stove. The heat from the stove burner is conducted through a medium (a metal pot) to the food.

CONVECTION -- The transfer of heat due to the physical movement of an object. We can observe convection by looking at a pot of boiling water. Have you ever noticed that when a pot of water is boiling, the water seems to follow a vertical circular motion? This is convection. The parcel of heated water at the bottom of the pot rises, as it rises it gives off some of its heat. Because it loses some heat, the parcel is cooler than the surrounding water. It then sinks to the bottom of the pot and the process is started again. The path of the rising water followed by the sinking water traces out a circle.

RADIATION -- The transfer of heat by means of waves. This is the most difficult method of heat transfer to understand. Yet, we experience it every day. We feel the effects of radiation whenever we stand near a stove or oven which is being used. We feel the heat radiating from the stove or oven to our skin. Similarly, we have all been outside on a sunny, hot Summer's day. If we look up to the sky we can feel the rays of the Sun hitting our faces. The Sun is radiating its heat to the Earth.

It is through one of the above processes of heat transfer that causes the air temperature at deep-ocean station 41001 to be warmer than that of land station CLKN7 during the winter months. Which process do you believe to be the cause of the air temperature differences between these two stations? I'll give you a hint, it has something to do with the temperature of the ocean water. Lets look at a graph of both the average air and water temperatures from Station 41001.

As you can see from the graph, the January (month 1) and February (month 2) water temperatures are about 20 degrees while the respective air temperatures are about 15 degrees. This is a 5 degree difference in temperature between the air and the water at the same geographical location!!

We can figure out what heat transfer process is influencing the air temperature at station 41001 by applying the three methods to our situation and then we can choose the one that seems most logical.

First, lets look at conduction. This process involves the transfer of heat through a conductive medium. Well, nothing exists between the air and the water surface. In our situation, the heat is going directly from the water to the air without passing through a conductive medium. Therefore, this is not the applicable process that is causing the warm winter-time air temperatures at station 41001.

Convection involves the movement of heated objects. The physical movement must be a result of the heating, such as with the pot of boiling water where the vertical movement is caused by the intense heat applied to the bottom of the pot. Because the ocean water isn't moving into or through the atmosphere as a result of the sun's heating of the water, convection isn't the process influencing air and water temperature difference. Ocean water is moving through the lower few feet of the air as ocean surface waves, but this doesn't occur because of the sun's heat.

The final process, radiation, is causing the winter-time air temperatures over water to be warmer than the winter-time air temperatures over land. The heat of the ocean is being given off (radiated) into the air, thus making the air substantially warmer.

You might be interested in
2. A wave on a rope has a wavelength of 2.0 m and a frequency of 2.0 Hz. What is the speed of the
TEA [102]

Answer:

4 m/s or 4 meters per second.

Explanation:

In order to calculate the speed of wave, you multiply the wavelength in meters and the frequency of the Wave in Hertz. 2 times 2 equals 4. The wave speed is always in m/s considering that the wavelength is also in meters.

7 0
3 years ago
The outer layer of cable on a cable reel is 16.2 cm from the center of the reel. The reel is initially stationary and can rotate
ahrayia [7]

Answer:

B. w=12.68rad/s

C. α=3.52rad/s^2

Explanation:

B)

We can solve this problem by taking into account that (as in the uniformly accelerated motion)

\theta=\omega_{0}t+\frac{1}{2}\alpha t^{2}\\\theta = \frac{s}{r}      ( 1 )

where w0 is the initial angular speed, α is the angular acceleration, s is the arc length and r is the radius.

In this case s=3.7m, r=16.2cm=0.162m, t=3.6s and w0=0. Hence, by using the equations (1) we have

\theta=\frac{3.7m}{0.162m}=22.83rad

22.83rad=\frac{1}{2}\alpha (3.6s)^2\\\\\alpha=2\frac{(22.83rad)}{3.6^2s}=3.52\frac{rad}{s^2}

to calculate the angular speed w we can use\alpha=\frac{\omega _{f}-\omega _{i}}{t _{f}-t _{i}}\\\\\omega_{f}=\alpha t_{f}=(3.52\frac{rad}{s^2})(3.6)=12.68\frac{rad}{s}

Thus, wf=12.68rad/s

C) We can use our result in B)

\alpha=3.52\frac{rad}{s^2}

I hope this is useful for you

regards

3 0
3 years ago
Read 2 more answers
What are examples of convection currents?
hram777 [196]

Answer:

I would say all of the above.

Explanation:

Look below for more examples

5 0
3 years ago
A 40.0 kg beam is attached to a wall with a hi.nge and its far end is supported by a cable. The angle between the beam and the c
GalinKa [24]

The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.

To find the answer, we need to know about the tension.

<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
  • Let's draw the free body diagram of the system using the given data.
  • From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
  • For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

                           N_x=86.62N

  • We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

                           N_y=F_V=mg-Tsin59\\

  • To find Ny, we need to find the tension T.
  • For this, we can equate the net horizontal force.

                           F_H=N_x=Tcos59\\\\T=\frac{F_H}{cos59} =\frac{86.62}{0.51}= 169.84N

  • Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

                    N_y= (40*9.8)-(169.8*sin59)=246.4N

  • Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

                 N=\sqrt{N_x^2+N_y^2} =\sqrt{(86.62)^2+(246.4)^2}=261.12N

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.

Learn more about the tension here:

brainly.com/question/28106871

#SPJ1

4 0
2 years ago
Read 2 more answers
A discus thrower turns with angular acceleration of 50 rad/s2, moving the discus in a circle of radius 0.80m. Find the radial an
anyanavicka [17]

Answer:

The value of tangential acceleration \alpha_{t} =  40 \frac{m}{s^{2} }

The value of radial acceleration \alpha_{r} = 80 \frac{m}{s^{2} }

Explanation:

Angular acceleration = 50 \frac{rad}{s^{2} }

Radius of the disk = 0.8 m

Angular velocity = 10 \frac{rad}{s}

We know that tangential acceleration is given by the formula \alpha_{t} = r \alpha

Where r =  radius of the disk

\alpha = angular acceleration

⇒ \alpha_{t} = 0.8 × 50

⇒ \alpha_{t} = 40 \frac{m}{s^{2} }

This is the value of tangential acceleration.

Radial acceleration is given by

\alpha_{r} = \frac{V^{2} }{r}

Where V = velocity of the disk = r \omega

⇒ V = 0.8 × 10

⇒ V = 8 \frac{m}{s}

Radial acceleration

\alpha_{r} = \frac{8^{2} }{0.8}

\alpha_{r} = 80 \frac{m}{s^{2} }

This is the value of radial acceleration.

7 0
3 years ago
Other questions:
  • Alan always turns the aquarium light on before putting fish food into the tank. after a while, he notices that the fish swim to
    12·1 answer
  • If a force of 250N is applied to a piano being pushed up a ramp at an angle of 18degrees above the horizontal, what force is bei
    6·1 answer
  • The diagram below shows the layers of a rock having a trilobite. which statement about the rock fossils is true?
    7·1 answer
  • A scientist is giving a demonstration with a Van de Graaff generator in a class about electrostatics. The scientist can detect t
    15·2 answers
  • Which statement describes a controlled experiment?
    6·1 answer
  • An electroscope is a device that detects charge on objects that touch it or are brought near it. John rubs a piece of cotton fab
    7·2 answers
  • Why isn't solar energy usually the only power source for a region​
    13·1 answer
  • What is the source of energy​
    8·1 answer
  • Why trucks are made to have many tires?​
    14·1 answer
  • Calculate the average speed of a toy car that travels 20m in 40s
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!