I believe the answer is A. hope this helps :)
Typical examples of inelastic collision are between cars, airlines, trains, etc.
For instance, when two trains collide, the kinetic energy of each train is transformed into heat, which explains why, most of the times, there is a fire after a collision. However, the momentum of the two trains that are involved in the collision remains unaffected. So, the trains collide with all their speed, maintaining their momentum, yet their kinetic energy is transformed into heat energy.
Another way to explain a train or a car collision is this: when the two trains or cars collide, they stick together while slowing down. They slow down because their kinetic energy is gradually lost. Still, they collide because they conserve their momentum.
Answer:
10-1 Temperature and Expansion. 135 ... text, the laboratory work that you do, or your physics teacher. ... Assume that the speed of sound in air is 340 m/s. How.
Explanation:
hope that helps
Answer:
Our eyes are most sensitive to the wavelengths corresponding to the yellow and green colors of the spectrum. Flashy signs and some fire engines are painted in a yellowish-green color to attract our attention.
Answer:
Explanation:
Given the following data;
Mass of child = 23 kg
Mass of bike = 5.5 kg
Velocity = 4.5 m/s
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
To find the momentum of each of them;
I. Momentum of the child
Momentum C = mass * velocity
Momentum C = 23 * 4.5
Momentum C = 103.5 Kgm/s
II. Momentum of the bike
Momentum B = mass * velocity
Momentum B = 5.5 * 4.5
Momentum B = 24.75 Kgm/s
Hence, we can deduce from the calculations that the momentum of the child is greater than that of the bike because of the higher mass possessed by the child.