Answer:
(a) The length of the pendulum on Earth is 36.8cm
(b) The length of the pendulum on Mars is 13.5cm
(c) Mass suspended from the spring on Earth is 0.37kg
(d) Mass suspended from the spring on Mars is 0.36kg
Explanation:
Period = 1.2s, free fall acceleration on Earth = 9.8m/s^2, free fall acceleration on Mars = 3.7m/s^2
( a) Length of pendulum on Earth = [( period ÷ 2π)^2] × acceleration = (1.2 ÷ 2×3.142)^2 × 9.8 = 0.0365×9.8 = 0.358m = 35.8cm
(b) Length of the pendulum on Mars = (1.2÷2×3.142)^2 × 3.7 = 0.0365×3.7 = 0.135cm = 13.5m
(c) Mass suspended from the spring on Earth = (force constant×length in meter) ÷ acceleration = (10×0.358) ÷ 9.8 = 0.37kg
(d) Mass suspended from the spring on Mars = (10×0.135)÷3.7 = 0.36kg
I believe the answer is chemical reactivity because: Characteristics such as melting point, boiling point, density, solubility, color, odor, etc. are physical properties.
Answer:
L = 41.09 Kg m2 / s The angular momentum does not depend on the time
Explanation:
The definition of angular momentum is
L = r x p
Where blacks indicate vectors
Let's apply this definition our case. Linear momentum
p = m v
Let's replace
L = m r x v
The given function is
x = 6.00 i ^ + 4.15 t j
^
We look for speed
v = dx / dt
v = 0 + 4.15 j ^
To evaluate the angular momentum one of the best ways is to use determinants
![L = m \left[\begin{array}{ccc}i&j&k\\6&4.15t&0\\0&4.15&0\end{array}\right]](https://tex.z-dn.net/?f=L%20%3D%20m%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C6%264.15t%260%5C%5C0%264.15%260%5Cend%7Barray%7D%5Cright%5D)
L = m 6 4.15 k ^
The other products give zero
Let's calculate
L = 1.65 6 4.15 k ^
L = 41.09 Kg m2 / s
The angular momentum does not depend on the time
Many ways for example they look up related things and study them or they can test it and see what happens