Yes I got an A in college algebra...
Answer:
x = 18
Step-by-step explanation:
took test!!
Complete Question:
A population proportion is 0.4. A sample of size 200 will be taken and the sample proportion p will be used to estimate the population proportion. Use z- table Round your answers to four decimal places. Do not round intermediate calculations. a. What is the probability that the sample proportion will be within ±0.03 of the population proportion? b. What is the probability that the sample proportion will be within ±0.08 of the population proportion?
Answer:
A) 0.61351
Step-by-step explanation:
Sample proportion = 0.4
Sample population = 200
A.) proprobaility that sample proportion 'p' is within ±0.03 of population proportion
Statistically:
P(0.4-0.03<p<0.4+0.03)
P[((0.4-0.03)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.03)-0.4)/√((0.4)(.6))/200
P[-0.03/0.0346410 < z < 0.03/0.0346410
P(−0.866025 < z < 0.866025)
P(z < - 0.8660) - P(z < 0.8660)
0.80675 - 0.19325
= 0.61351
B) proprobaility that sample proportion 'p' is within ±0.08 of population proportion
Statistically:
P(0.4-0.08<p<0.4+0.08)
P[((0.4-0.08)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.08)-0.4)/√((0.4)(.6))/200
P[-0.08/0.0346410 < z < 0.08/0.0346410
P(−2.3094 < z < 2.3094)
P(z < -2.3094 ) - P(z < 2.3094)
0.98954 - 0.010461
= 0.97908
<span>Which of the following can cause a country to NOT fit the Demographic Transition Model?</span>
You just need to divided 3 by 9 and it will be 3 or you can divide 6 by 18 and it will be the same so the unite rate is $3