3/70=x/100
(3/70)*100=x
300/70=x
x=30/7=4.2857 roughly
If you're using the app, try seeing this answer through your browser: brainly.com/question/2867785_______________
Evaluate the indefinite integral:

Make a trigonometric substitution:

so the integral (i) becomes


Now, substitute back for t = arcsin(x²), and you finally get the result:

✔
________
You could also make
x² = cos t
and you would get this expression for the integral:

✔
which is fine, because those two functions have the same derivative, as the difference between them is a constant:
![\mathsf{\dfrac{1}{2}\,arcsin(x^2)-\left(-\dfrac{1}{2}\,arccos(x^2)\right)}\\\\\\ =\mathsf{\dfrac{1}{2}\,arcsin(x^2)+\dfrac{1}{2}\,arccos(x^2)}\\\\\\ =\mathsf{\dfrac{1}{2}\cdot \left[\,arcsin(x^2)+arccos(x^2)\right]}\\\\\\ =\mathsf{\dfrac{1}{2}\cdot \dfrac{\pi}{2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7B1%7D%7B2%7D%5C%2Carcsin%28x%5E2%29-%5Cleft%28-%5Cdfrac%7B1%7D%7B2%7D%5C%2Carccos%28x%5E2%29%5Cright%29%7D%5C%5C%5C%5C%5C%5C%0A%3D%5Cmathsf%7B%5Cdfrac%7B1%7D%7B2%7D%5C%2Carcsin%28x%5E2%29%2B%5Cdfrac%7B1%7D%7B2%7D%5C%2Carccos%28x%5E2%29%7D%5C%5C%5C%5C%5C%5C%0A%3D%5Cmathsf%7B%5Cdfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%5B%5C%2Carcsin%28x%5E2%29%2Barccos%28x%5E2%29%5Cright%5D%7D%5C%5C%5C%5C%5C%5C%0A%3D%5Cmathsf%7B%5Cdfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cdfrac%7B%5Cpi%7D%7B2%7D%7D)

✔
and that constant does not interfer in the differentiation process, because the derivative of a constant is zero.
I hope this helps. =)
I want to say it’s the second one
The answer is 77 becuase you have to add all of the sides that are same as the number
Answer:
the answer for this sub-question is 43/90. This is assuming your teacher wants you to write it in fraction form. If she or he wants you to write it in decimal form, then 43/90 = 0.4778 approximately which converts to 47.78%
Answer in fraction form: 43/90
Answer in decimal form: 0.4778 (round this however you are instructed to)
Answer in percent form: 47.78% (round this however you are instructed to)
Step-by-step explanation: