1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
3 years ago
14

The go kart driver does 1234J of work when hitting a barrier. Assuming the barrier moved 100 meters from its original location,

what was the force at which the driver hit the barrier?
Physics
2 answers:
leva [86]3 years ago
6 0
Force=1234J*100m
So the answer is 123400

bezimeni [28]3 years ago
4 0
The guy in front of me is correct
You might be interested in
Which statement best describes a characteristic of gases?
salantis [7]
Assumes the shape and volume of its container 
<span>particles can move past one another</span>
8 0
3 years ago
A set of charged plates 0.00262 m apart has an electric field of 155 N/C between them. What is the potential difference between
mylen [45]

Answer: The potential difference between the plates = 0.4061V

Explanation:

Given that the

Electric field strength E = 155 N/C

Distance d = 0.00262 m

From the definition of electric field strength, is the ratio of potential difference V to the distance between the plates. That is

E = V/d

Substitute E and d into the above formula

155 = V/0.00262

Cross multiply

V = 155 × 0.00262

V = 0.4061 V

The potential difference between the plates is 0.4061 V

5 0
3 years ago
Explain why does the bowling ball decelerate as it travels along the lane
frutty [35]

The main cause of this is Friction. The more oil that is laid down, the less friction there is between the ball and the lane surface. The less friction, the harder it is for the bowler to send the ball in a curved path imparted by the spin that the bowler puts on the ball at the instant of release.

5 0
3 years ago
Calculate the magnitude of the electric field inside the solid at a distance of 9.50 cm from the center of the cavity. Express y
WITCHER [35]

Question:

A point charge of -2.14uC  is located in the center of a spherical cavity of radius 6.55cm  inside an insulating spherical charged solid. The charge density in the solid is 7.35×10−4 C/m^3.

a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50cm  from the center of the cavity.  

Express your answer using two significant figures.

Answer:

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity 3.65\times 10^5N/C

Explanation:

A point charge ,q = -2.14\times 10^{-6} C is located in the center of a spherical cavity of radius , r =6.55\times 10^{-2}  m inside an insulating spherical charged solid.  

The charge density in the solid , d = 7.35 \times 10^{-4}C/m^3.

Distance from the center of the cavity,R =9.5\times 10^{-2 }m

Volume of shell of charge= V  =(\frac{4\pi}{3})[ R^3 - r^3 ]

Charge on the shell ,Q = V \times d'

Q =(\frac{4\pi}{3})[ R^3 - r^3 ] \times d

Q = 4.1888*\times 10^{-4 }[8.57375 - 2.81011 ]\times 7.35\times 10^{-4}

Q = 4.1888\times 10^{-4} [5.76364 ] \times 7.35 \times 10^{-4}

Q =2.4143 \times 10^{-4} \times 7.35 \times 10^ { -4}

Q =1.7745 \times 10^{-6 }C

Electric field at 9.5\times 10^{-2}m due to shellE1  = \frac{k Q}{R^2}

E1 =  \frac{ 9 \times 10^9\times 1.7745\times 10^{-6 }}{ 90.25\times 10^{-4}}

E1 =1.769\times 10^6 N/C

Electric field at  9.5\times 10^{-2} due to 'q' at center E2 = \frac{kq}{R^2}

E2 =\frac{ - 9 \times 10^9\times 2.14\times 10^{-6 }}{ 90.25\times 10^{-4}}

E2 =2.134\times 10^6 N/C

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity

= E2- E1

=[  2.134  - 1.769 ]\times 10^6

= 3.65\times 10^5 N/C

8 0
3 years ago
Lukalu is rappelling off a cliff. The parametric equations that describe her horizontal and vertical position as a function of t
andre [41]

Answer:

2.5 s, 5 m

Explanation:

The equations for the horizontal and vertical position of Lukalu are:

x(t) = 8t\\y(t) = -16t^2 + 100

we can find the time it takes her to reach the ground by requiring that the vertical position becomes zero:

y(t) = 0

So we find:

0=-16t^2 +100\\16t^2 = 100\\t=\sqrt{\frac{100}{16}}=2.5 s

The horizontal distance of Lukalu instead will be given by the equation for the horizontal position, substituting t = 2.5 s:

x=8t = 8 \cdot 2.5 s =5 m

4 0
3 years ago
Other questions:
  • Underground water that seeps out onto the land's surface is called a
    10·2 answers
  • If a 990 kg car is on the road and the Ff is 360 n what is the normal force
    5·2 answers
  • Cattle are likely to become highly agitated when separated from<br> their herdmates.
    12·1 answer
  • You own a yacht which is 14.5 meters long. It is motoring down a canal at 10.6 m/s. Its bow (the front of the boat) is just abou
    7·1 answer
  • The three osicles known as the hammer, anvil and stirrup __________.
    11·1 answer
  • By what factor must the amplitude of a sound wave be increased in order to increase the intensity by a factor of 9?a. 9 b. 2 c.
    8·2 answers
  • What is the length of an aluminum rod at 65°C if its length at 15°C is 1.2 meters? A. 0.00180 meter B. 1.201386 meters C. 1.2
    10·2 answers
  • A cement truck of mass 14,000 kg moving 10m/s slams into a wall and comes to a halt in .2s. What is the force of impact on the t
    9·1 answer
  • I cant solve this problem, and our teacher said that this would be in the test we'll have tomorrow, can someone help me?
    14·1 answer
  • A stone is dropped from a high cliff vertically. After 6
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!