<span>In this problem, we need to solve for Bubba’s mass. To do this, we let A be the area of the raft and set the weight of the displaced fluid with the raft alone as ρwAd1g and ρwAd2g with the person on the raft, </span>where ρw is the density of water, d1 = 7cm, and d2= 8.4 cm. Set the weight of displaced fluid equal to the weight of the floating objects to eliminate A and ρw then solve for m.
<span>ρwAd1g = Mg</span>
ρw<span>Ad2g = (M + m) g</span>
<span>d2∕d1 = (M + m)/g</span>
m = [(d2<span>∕d1)-1] M = [(8.4 cm/7.0 cm) - 1] (600 kg) =120 kg</span>
This means that Bubba’s mass is 120 kg.
Answer:
no the moon does not rotate it only goes in circle just like the sun so I disagree with your friend
Working...
length of wire L = 1.5 m
current I = 7 A
potential difference V = 68 Volt
According to Ohm's Law
V = IR
R = V/I
R = 68/7
R = 9.7 Ω
Answer:
Same magnitude of the 10 nc charge cause the electric field is external.
Explanation:
To do a better explanation, let's go and suppose we have an electric field of, 1300 N/C with a 10 nC charge.
As the system we are talking about is really big, and the charge is small, we can assume always if the charge is sitting right in the same point where the electric field is, then, the electric field would not suffer any kind of alteration in it's value. Therefore, no matter what value of the charge is sitting here, the electric field is independent of the charge, so it would not feel any alteration. However, the force that the charge is feeling would be stronger than in the first case.
F = qE
If charge is doubled, then the force would be bigger in the second case than in the first case, but electric field remain the same value.
Answer:
, charges are both positive or both negative
Explanation:
The electrostatic force between the two spheres is given by

where
k is the Coulomb's constant
q1 and q2 are the charges on the two spheres
r is the distance between the centres of the two spheres
In this problem, we have
is the force
is the distance between the spheres
because the two spheres have identical charge
Solving the formula for q, we find

And the two charges have the same sign (so, both positive or both negative), since the sign of the force is positive (+0.30 N), so it is a repulsive force.