Answer:
A planetesimal is an object formed from dust, rock, and other materials. The word has its roots in the concept infinitesimal, which indicates an object too small to see or measure. Planetesimals can be anywhere in size from several meters to hundreds of kilometers.
Protoplanets are thought to form out of kilometer-sized planetesimals that gravitationally perturb each other's orbits and collide, gradually coalescing into the dominant planets.
Velocity and acceleration are vector quantities whereas speed, temperature and age are not.
<h3>What is a vector quantity?</h3>
Vector is a quantity that has both magnitude and direction and is represented by an arrow whose direction is same as that of the quantity and length is proportional to the quantity's magnitude.
Vector has magnitude and direction but it does not have position. Velocity and acceleration both are vector quantities as they have magnitude and direction.
If the speed of an object remains same but direction changes then the object is accelerating. It is important to remember that acceleration and velocity aren't always in the same direction.
To know more about vector quantity, refer
brainly.com/question/626479
#SPJ1
Because if you have a large population, there is a need for more food and water, but if you don't have enough food and water to support a large population, that limits it from happening
Answer:
Option (D)
Explanation:
Terrestrial planets refers to those four planets that are nearest to the sun and that lies within the asteroid belt. These planets are mainly composed of rocks or other metal objects that have a hard and resistant surface on it. They have a metal core that is molten (liquid) in nature, and atmosphere is relatively less dense, and also various geological features are present on it like the crater, volcanoes which can be observed with the help of satellites. The average densities of these planets is about four times the density of water. For example, the density of water is 1 g/cm³, whereas the density of earth is 5.5 g/cm³.
Thus, the correct answer is option (D).
In reality we don't see the galaxy we see it's reflection .. the light hits or got emitted by the star travel all the way long to hit our eyes .. we see their reflection . everything around you that you see is it's reflection