Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
Yes, Sliding friction opposes the movement of the book, slowing it down.sliding That's the 'kinetic' kind.. According to Newton's second law, F=ma. That is, the bear's acceleration should be proportional to the total force acting on the bear. As the bear's velocity is constant, its acceleration is zero. Therefore, the total Force acting on the bear is zero. Thus, the friction has to be equal in magnitude and opposite in direction to the bear's weight. As W=mg, we get that its weight is <span>9.8*400=3,920 Newton. Thus, the friction acting on the bear is 3,920 Newton</span>
Answer:
0.686 g of ice melts each second.
Solution:
As per the question:
Cross-sectional Area of the Copper Rod, A = 
Length of the rod, L = 19.6 cm = 0.196 m
Thermal conductivity of Copper, K = 
Conduction of heat from the rod per second is given by:

where
= temperature difference between the two ends of the rod.
Thus

Now,
To calculate the mass, M of the ice melted per sec:

where
= Latent heat of fusion of water = 333 kJ/kg

Answer:
after a product has been improved and approved? reporting the results finding ways to lower costs selling a prototype determining criteria.
Explanation:
Answer:
The steps are outlined in the explanation below.
Explanation:
The average velocity is derived midpoint from the initial to the final velocity. Here is the proof:
Find the total displacement:
let the displacement be given by the letter s
Then since the average velocity is defined as: 
where t = final time
t₀ = initial time
v = final speed
v₀ = initial time
where x denotes the position, then

where v =
and dx = change in distance with respect to time.