Answer:
89.11kg
Explanation:
Note an object weighs less when in a fluid and the weight of the volume of the fluid displaced is known as the upthrust.
Now, the person is going to displace the volume 89/1025 =0.087m3 { from density D = mass(M)/volume(V)}
The weight of the fluid displaced is the density of the fluid × volume of fluid displaced.
The weight of the fluid=0.087m3× 1kg/me = 0.087kg
Now the weight of the fluid displaced is referred to as the upthrust.
Now the real weight - the apparent weight = the upthrust.
Hence the apparent weight = real weight - upthrust
Apparent weight = 89.2-0.087 = 89.11kg
Answer:
If the acceleration of an object remains constant, then its velocity is constant. False
If the acceleration of an object moving along a line is always 0, then its velocity is constant. True
It is impossible for the instantaneous velocity at all times aless than or equalstless than or equalsb to equal the average velocity over the interval aless than or equalstless than or equalsb. True
A moving object can have negative acceleration and increasing speed. False
Explanation:
First of all, before we can talk of acceleration, then there must be a change in velocity. If the velocity of a body is constant, then there will not be any acceleration at all.
If the acceleration is zero, then there is no change in velocity, the velocity is constant.
The instantaneous velocity is always changing all through the motion hence it cannot be determined at all times to equal the average velocity.
If the acceleration is negative, it simply means that the velocity is decreasing with time. Hence there can't be a negative acceleration and increasing velocity.
The gravitational force of attraction between two objects is directly proportional to the product of the two masses and inversely proportional to the square of the distance between them.

Where,
G = Gravitational Universal Constant
M = Mass of the Planet
m = Mass of the object
r = Distance
Therefore the amount of force exerted by the first object on the second object is equal to the amount of the force exerted on the second object by the first.
The gravitational force exerted by Larry on the Earth is same as the force exerted on Larry by the Earth.
That is 300N.
Answer:
208 Joules
Explanation:
The radius of the circular path the charge moves, r = 26 m
The magnetic force acting on the charge particle, F = 16 N
Centripetal force,
= m·v²/r
Kinetic energy, K.E. = (1/2)·m·v²
Where;
m = The mass of the charged particle
v = The velocity of the charged particle
r = The radius of the path of the charged particle
Whereby the magnetic force acting on the charge particle = The centripetal force, we have;
F =
= m·v²/r = 16 N
(1/2) × r ×
= (1/2) × r × m·v²/r = (1/2)·m·v² = K.E.
∴ (1/2) × r ×
= (1/2) × 26 m × 16 N = = (1/2)·m·v² = K.E.
∴ 208 Joules = K.E.
The kinetic energy of an particle moving in the circular path, K.E. = 208 Joules.
Answer:
a) 1200 kN/m²
b) 1,200,000 kg/ms²
c) 1.2 × 10⁹ kg/km.s²
Explanation:
Given:
Pressure = 1200 kPa
a) 1 Pa = 1 N/m²
thus,
1000 N = 1 kN
1200 kPa = 1200 kN/m²
b) 1 Pa = 1 N/m² = 1 kg/ms²
Thus,
1200 kPa = 1200000 Pa
or
1200000 Pa = 1200000 × 1 kg/ms²
or
= 1,200,000 kg/ms²
c) 1 km = 1000 m
or
1 m = 0.001 Km
thus,
1,200,000 kg/ms² =
or
= 1.2 × 10⁹ kg/km.s²