The Asthenosphere is where the convection currents in the Earth occor
Answer:

Explanation:
It is given that,
Depth of Death valley is 85 m below sea level, 
The summit of nearby Mt. Whitney has an elevation of 4420 m, 
Mass of the hiker, m = 65 kg
We need to find the change in potential energy. It is given by :



or

So, the change in potential energy of the hiker is
. Hence, this is the required solution.
Your answer would be true. Because if we didn't have those pieces of evidence, we wouldn't know about a lot of the ancient civilizations that we know today without that. Small pieces of evidence like that can help us to determine how they lived, or what they used to do, or even what they ate.
Answer:
original mass of the block of ice is 38.34 gram
Explanation:
Given data
cup mass = 150 g
ice temperature = 0°C
water mass = 210 g
water temperature = 12°C
ice melt = 2 gram
to find out
solution
we know here
specific heat of aluminum is c = 0.900 joule/gram °C
Specific heat of water C = 4.186 joule/gram °C
so here temperature difference is dt = 12- 0 = 12°C
so here heat lost by water and cup are given by
heat lost = cup mass × c × dt + water mass × C × dt
heat lost = 150 × 0.900 × 12 + 210 × 4.186 × 12
heat lost = 12168.72 J
so
mass of ice melt here = heat lost / latent heat of fusion
here we know latent heat of fusion = 334.88 joule/gram
so
mass of ice melt = 12168.72 / 334.88
mass of ice melt is 36.337554 gram
so mass of ice is here = mass of ice melt + ice melt
mass of ice = 36.337554 + 2
mass of ice = 38.337554 gram
so original mass of the block of ice is 38.34 gram
In the first case:
when we heat any gas, the Kinetic Energy of the molecules increases, making it collide more frequently with the surface, increasing the pressure
more collisions with the surface means more force applied on it, which would push the piston harder than before, moving it outwards.
In the second case:
since the molecules inside the beaker have no way to escape, they would keep compressing the more you push the beaker downwards.
since there is the same number of molecules and lesser volume to cover, the molecules will start colliding with the surfaces more frequently, which would resist the downward force.
<em>another way to think about it is to imagine yourself where the trapped air is. you would be happy when the room is spacious but if the wall starts moving towards you, you would resist the change by your body because you need space to exist. making it harder for the wall to move.</em>
<em>pushing the beaker downwards will keep getting harder and harder the more you push until you reach a point where the molecules will be completely compact. applying even more force forces the molecules to enter water, removing the air that was resisting it all and making you able to get the beaker in water.</em>
Third case:
just like in the first case, the heated air will apply force on the surface, including the cork. which would pop off when enough force is applied.