1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
10

Someone please help me (asap)...

Mathematics
1 answer:
Dvinal [7]3 years ago
6 0

9514 1404 393

Answer:

Step-by-step explanation:

We can call the blank values 'a' and 'b' so we have ...

  ay\sqrt[3]{6y}-14\sqrt[3]{48y^b}=-11y\sqrt[3]{6y}

We can move everything to inside the radical by cubing those things that are outside.

  \sqrt[3]{6a^3y^4}-\sqrt[3]{131712y^b}=-\sqrt[3]{7986y^4}

In order for the terms on the left to be "like" terms, the value of b must be 4. Having determined that, we can remove the cubes from under the radical and factor out the radical.

  ay\sqrt[3]{6y}-28y\sqrt[3]{6y}=-11y\sqrt[3]{6y}\\\\a-28=-11 \qquad\text{divide by $y\sqrt[3]{6y}$}\\\\a=17

Then the desired expression is ...

  \boxed{17}y\sqrt[3]{6y}-14\sqrt[3]{48y^{\boxed{4}}}=-11y\sqrt[3]{6y}

You might be interested in
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
Ms. Hanuanaer helped students prepare juice. The recipe was 320 ounces of cranberry juice, 320 ounces of sprite, and a splash of
salantis [7]
This is a two step word problem so first your gonna have to subtract 320-50= 270 then divide to find your final answer so 270 divided by 8 is 33.75
4 0
3 years ago
Rachel has already written 10 pages, and she expects to write 1 page for every additional hour spent writing. How many hours wil
vlada-n [284]

Answer:

27?

Step-by-step explanation:

because 1 page per 1 hour leads up to 27 hours for 27 pages. Or if your not counting the 10 pages she has already written, she spent 17 hours.

4 0
3 years ago
Please help me find the answer
mixas84 [53]
136 would be the answer
5 0
2 years ago
A window washer cleaned 38 windows in 2 hours.At this rate, how many windows did he clean in 7 hours?
ValentinkaMS [17]
Half of 38 is 19 so in one hour he can clean 19 windows. Then in 7 hours he can clean 133 windows. please rate me the brainiest!<span />
5 0
3 years ago
Read 2 more answers
Other questions:
  • Please help!! Will give brainliest to best answer.
    13·2 answers
  • Leah orders 3 books for $10 each and 5 video games for $10 each in one shipment.
    9·2 answers
  • Solve for X <br><br>can you show me how to do this problem.​
    5·2 answers
  • A certain radioactive substance decays from 100000 grams to 1000 grams in 34 days. What's it's half-life ?
    5·1 answer
  • How many tiles are in figure 0 for the tile pattern shown below
    9·1 answer
  • Todo numero es divisible por 3, si al sumar el total de sus digitos, se obtiene un numero mutiplo del tres (se puede expresar co
    15·1 answer
  • Given g(x)= 3x−4, solve for x when g(x) =5.
    15·1 answer
  • what is the cost of 8 books at $4 each? what is the cost of x books at $4 each? what is the cost of 5 books at $x each ?​
    7·1 answer
  • Number 11 please help 10 points no links pleAse
    6·1 answer
  • This cylinder has a volume of 121 cubic inches and a diameter of 4 inches.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!