CaCl2 and KCl are both salts which dissociate in water
when dissolved. Assuming that the dissolution of the two salts are 100 percent,
the half reactions are:
<span>CaCl2 ---> Ca2+ + 2 Cl-</span>
KCl ---> K+ + Cl-
Therefore the total Cl- ion concentration would be coming
from both salts. First, we calculate the Cl- from each salt by using stoichiometric
ratio:
Cl- from CaCl2 = (0.2 moles CaCl2/ L) (0.25 L) (2 moles
Cl / 1 mole CaCl2)
Cl- from CaCl2 = 0.1 moles
Cl- from KCl = (0.4 moles KCl/ L) (0.25 L) (1 mole Cl / 1
mole KCl)
Cl- from KCl = 0.1 moles
Therefore the final concentration of Cl- in the solution
mixture is:
Cl- = (0.1 moles + 0.1 moles) / (0.25 L + 0.25 L)
Cl- = 0.2 moles / 0.5 moles
<span>Cl- = 0.4 moles (ANSWER)</span>
Answer: X could represent the element of oxidation state (+2) such as (Mg2+, Pb2+, Ba2+, Ca2+, Ba2+, Zn2+, ....etc)
Explanation:
- The formula of the compound XSO4 is a neutral compound that the algebraic summation of the oxidation states of different elements in it must be zero.
- The group SO4 has the oxidation state (2-), that S has (6+) oxidation state and O has (2-) oxidation state, so the oxidation of SO4 = (6+) + (-2*4) = -2.
- It is clear that X must have the oxidation state 2+.
- So, X could be represents by many different elements such as (Mg2+, Pb2+, Ba2+, Ca2+, Ba2+, Zn2+, Fe2+, ....etc)
Answer:
Save Fuel, Save Earth
Fuel and time wait for none!
Be wise, don’t waste fuel
Save fuel, stop being cruel
Don’t contribute towards global warming
Care for future, save fuel
Answer:
1. 504.8 g Al(NO3)3
2. 14.3 moles O2
Explanation:
1.
g = moles x molar mass = 2.37 x 212.996 = 504.8 g Al(NO3)3
MM Al(NO3)3 = 212.996 g/mol
2.
moles = mass : molar mass = 456.89: 32 = 14.3 moles O2